Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots

Metadata Updated: September 6, 2025

Background The honeybee (Apis mellifera) has been used with great success in a variety of behavioral studies. The lack of genomic tools in this species has, however, hampered efforts to provide genome-based explanations for behavioral data. We have combined the power of DNA arrays and the availability of distinct behavioral stages in honeybees to explore the dynamics of gene expression during adult development in this insect. In addition, we used caffeine treatment, a procedure that accelerates learning abilities in honeybees, to examine changes in gene expression underlying drug-induced behavioral modifications.

      Results
      Spotted microarrays containing several thousand cDNAs were interrogated with RNAs extracted from newly emerged worker bees, experienced foragers and caffeine-treated bees. Thirty-six differentially expressed cDNAs were verified by northern blot hybridization and characterized in silico by sequencing and database searches. Experienced foragers overexpressed royal jelly proteins, a putative imaginal disc growth factor, a transcriptional regulator (Stck) and several enzymes, including α-glucosidases, aminopeptidases and glucose dehydrogenase. Naive workers showed increased expression of members of the SPARC and lectin families, heat-shock cognate proteins and several proteins related to RNA translation and mitochondrial function. A number of novel genes overexpressed in both naive and experienced bees, and genes induced by caffeine, have also been identified.


      Conclusions
      We have shown the usefulness of this transcriptome-based approach for gene discovery, in particular in the context of the efficacy of drug treatment, in a model organism in which routine genetic techniques cannot be applied easily.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/ccjp-2mqc
Data First Published 2025-07-14
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 670fc028-0ecb-46de-8c1b-541595e38493
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/ccjp-2mqc
Program Code 009:033
Source Datajson Identifier True
Source Hash 912849936062b8d43285410568bed85c254444eb5c46cca69d09d4fb8561d750
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.