Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Dynamic stage to discharge rating model archive

Metadata Updated: September 17, 2025

Ratings are used for a variety of reasons in water-resources investigations. The simplest rating relates discharge to the stage of the river. From a pure hydrodynamics perspective, all rivers and streams have some form of hysteresis in the relation between stage and discharge because of unsteady flow as a flood wave passes. Simple ratings are unable to represent hysteresis in a stage/discharge relation. A dynamic rating method is capable of capturing hysteresis owing to the variable energy slope caused by unsteady momentum and pressure. Using some simplifying assumptions, Fread (1973) developed what was termed a “dynamic loop” rating method to compute discharge from a time series of stage at a single streamgage for channels with compact geometry (no flood plain). Dynamic loop has specific meaning as it refers to a rating method that accounts for the variable energy slope “associated with the dynamic inertia and pressure forces of the unsteady flood discharge" (Fread, 1975) as opposed to rating loops imposed by alluvial bedform dynamics or scour and fill processes. A dynamic rating method developed to compute discharge from stage for compact channel geometry, referred to as DYNMOD, was previously developed through a simplification of the one-dimensional Saint-Venant equations. A dynamic rating method, which accommodates compound and compact channel geometry, referred to as DYNPOUND, has been developed through a similar simplification as a part of this study. The DYNMOD and DYNPOUND methods were implemented in the Python programming language. The dynamic rating methods were calibrated for six U.S. Geological Survey streamgage sites using observed discharge data collected at the sites. References: Fread, D.L., 1973, A dynamic model of stage-discharge relations affected by changing discharge, National Oceanic and Atmospheric Administration NWS Hydro-16, November 1973, Silver Spring, MD, 38 p.
Fread, D.L., 1975, Computation of stage-discharge relationships affected by unsteady flow, Water Resources Bulletin, American Water Resources Association, pp 213-228.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 12, 2025
Metadata Updated Date September 17, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 12, 2025
Metadata Updated Date September 17, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-61ef284bd34e8b818adb7b75
Data Last Modified 2022-06-07T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 9ffda53d-ca4d-42bb-92a0-22f231c060a5
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Old Spatial -120.3772, 36.7400, -82.4089, 46.8611
Source Datajson Identifier True
Source Hash 711d5ccdc22ae37c548991782741ff79248e787b24de89cc3ac1e3c73888fad5
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -120.3772, 36.7400, -120.3772, 46.8611, -82.4089, 46.8611, -82.4089, 36.7400, -120.3772, 36.7400}

Didn't find what you're looking for? Suggest a dataset here.