Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Try the next-generation Data Catalog at catalog-beta.data.gov and help shape it with your feedback.

DSCOVR EPIC Level 2 O3SO2AI

Metadata Updated: January 29, 2026

Robust cloud products are critical for Deep Space Climate Observatory (DSCOVR) to contribute to climate studies significantly. Building on our team’s track record in cloud detection, cloud property retrieval, oxygen band exploitation, and DSCOVR-related studies, we propose to develop a suite of algorithms for generating the operational Earth Polychromatic Imaging Camera (EPIC) cloud mask, cloud height, and cloud optical thickness products. Multichannel observations will be used for cloud masking; the cloud height will be developed with information from the oxygen A- and B- band pairs (780 nm vs. 779.5 nm and 680 nm vs. 687.75 nm); for the cloud optical thickness retrieval, we propose an approach that combines the EPIC 680 nm observations and numerical weather model outputs. Preliminary results from radiative transfer modeling and proxy data applications show that the proposed algorithms are viable.Product validation will be conducted by comparing EPIC observations/retrievals with counterparts from coexisting Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) satellites. The proposed work will include a rigorous uncertainty analysis based on theoretical and computational radiative transfer modeling that complements standard validation activities with physics-based diagnostics. We also plan to evaluate and improve the calibration of the EPIC O2 A- and B-band absorption channels by tracking the instrument performance over known targets, such as cloud-free ocean and ice sheet surfaces.The deliverables for the proposed work include an Algorithm Theoretical Basis Document (ATBD) for peer review, products generated with the proposed algorithms, and supporting research articles. The data products, which will be archived at the Atmospheric Science Data Center (ASDC) at the NASA Langley Research Center, will provide essential inputs needed for the community to apply EPIC observations to climate research and to interpret better The National Institute of Standards and Technology Advanced Radiometer (NISTAR) observations.The proposed work directly responds to the solicitation to “develop and implement the necessary algorithms and processes to enable various data products from EPIC sunrise to sunset observations once on orbit” and improve “the calibration of EPIC based on in-flight data.”

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 11, 2025
Metadata Updated Date January 29, 2026

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 11, 2025
Metadata Updated Date January 29, 2026
Publisher NASA/LARC/SD/ASDC
Maintainer
Identifier 10.5067/EPIC/DSCOVR/L2_O3SO2AI.003
Data Last Modified 2026-01-27
Category Earth Science
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 6f293799-56ae-4cc9-add7-77d39e111aab
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://epic.gsfc.nasa.gov/
Old Spatial "CARTESIAN",{"Boundary":{"Points":{"Latitude":-90,"Longitude":-180},{"Latitude":-90,"Longitude":180},{"Latitude":90,"Longitude":180},{"Latitude":90,"Longitude":-180},{"Latitude":-90,"Longitude":-180}}}, Minimum Altitude, 1474000 km
Program Code 026:000
Source Datajson Identifier True
Source Hash d350de320d57da05a2f4acac902c8587447d010438b979dbd8cac922b11973f3
Source Schema Version 1.1
Spatial
Temporal 2015-06-13/2015-06-13

Didn't find what you're looking for? Suggest a dataset here.