Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Digital map of iron sulfate minerals, other mineral groups, and vegetation of the western United States derived from automated analysis of Landsat 8 satellite data

Metadata Updated: July 6, 2024

Multispectral remote sensing data acquired by Landsat 8 Operational Land Imager (OLI) sensor were analyzed using an automated technique to generate surficial mineralogy and vegetation maps of the conterminous western United States. Six spectral indices (e.g. band-ratios), highlighting distinct spectral absorptions, were developed to aid in the identification of mineral groups in exposed rocks, soils, mine waste rock, and mill tailings across the landscape. The data are centered on the Western U.S. and cover portions of Texas, Oklahoma, Kansas, the Canada-U.S. border, and the Mexico-U.S. border during the summers of 2013 – 2014. Methods used to process the images and algorithms used to infer mineralogical composition of surficial materials are detailed in Rockwell and others (2021) and were similar to those developed by Rockwell (2012; 2013). Final maps are provided as ERDAS IMAGINE (.img) thematic raster images and contain pixel values representing mineral and vegetation group classifications. Rockwell, B.W., 2012, Description and validation of an automated methodology for mapping mineralogy, vegetation, and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains, Colorado: U.S. Geological Survey Scientific Investigations Map 3190, 35 p. pamphlet, 5 map sheets, scale 1:100,000, http://doi.org/10.13140/RG.2.1.2769.9365. Rockwell, B.W., 2013, Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado: U.S. Geological Survey Scientific Investigations Map 3252, 25 p. pamphlet, 1 map sheet, scale 1:325,000, http://doi.org/10.13140/RG.2.1.2507.7925. Rockwell, B.W., Gnesda, W.R., and Hofstra, A.H., 2021, Improved automated identification and mapping of iron sulfate minerals, other mineral groups, and vegetation from Landsat 8 Operational Land Imager Data: San Juan Mountains, Colorado, and Four Corners Region: U.S. Geological Survey Scientific Investigations Map 3466, scale 1:325,000, 51 p. pamphlet, https://doi.org/10.3133/sim3466/.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/44185efe073ee932c6e484eb39753956
Identifier USGS:5fd90505d34e30b9123cbbf3
Data Last Modified 20210222
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 61cbc32a-9358-4b87-9e80-0b8f7d59ddd2
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -126.8875,27.7958,-94.8936,49.9867
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash da6bdcb64f694bbd14e3f17e069b327cf19de647100d3121709ea8aa3ca98eb3
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -126.8875, 27.7958, -126.8875, 49.9867, -94.8936, 49.9867, -94.8936, 27.7958, -126.8875, 27.7958}

Didn't find what you're looking for? Suggest a dataset here.