Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Detection and Prognostics on Low Dimensional Systems

Metadata Updated: April 11, 2025

This paper describes the application of known and novel prognostic algorithms on systems that can be described by low dimensional, potentially nonlinear dynamics. The methods rely on estimating the conditional probability distribution of the output of the system at a future time given knowledge of the current state of the system. We show how to estimate these conditional probabilities using a variety of techniques, including bagged neural networks and kernel methods such as Gaussian Process Regression (GPR). The results are compared with standard method such as the nearest neighbor algorithm. We demonstrate the algorithms on a real-world data set and a simulated data set. The real-world data set consists of the intensity of an NH3 laser. The laser data set has been shown by other authors to exhibit low-dimensional chaos with sudden drops in intensity. The simulated data set is generated from the Lorenz attractor and has known statistical characteristics. On these data sets, we show the evolution of the estimated conditional probability distribution, the way it can act as a prognostic signal, and its use as an early warning system. We also review a novel approach to perform Gaussian Process Regression with large numbers of data points.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date April 11, 2025
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date April 11, 2025
Publisher Dashlink
Maintainer
Identifier DASHLINK_148
Data First Published 2010-09-22
Data Last Modified 2025-04-01
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 08ca75dc-e9b3-4cb3-89f2-b58d3c01199d
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/148/
Program Code 026:029
Source Datajson Identifier True
Source Hash 724c4076724c1373b124da39487557606f170b00ad3039e6a798bfe40b05f567
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.