Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Database for the Preliminary Map of the Surface Rupture from the August 9, 2020, Mw 5.1 Earthquake Near Sparta, North Carolina-The Little River Fault and Other Possible Coseismic Features

Metadata Updated: July 6, 2024

This publication is a preliminary map and geodatabase of the coseismic surface rupture and other coseismic features generated from the August 9, 2020, Mw 5.1 earthquake near Sparta, North Carolina. Geologic mapping facilitated by analysis of post-earthquake quality level 0 to 1 lidar, document the coseismic surface rupture, named the Little River fault, and other coseismic features. The Little River fault is traced for approximately 4 kilometers and cuts the regional Paleozoic fabric (mean foliation, 063°/57°), and the dominant strike of joint sets are 0°–10°, 130°–150° and 320°–340°. Individual fault strands occur in an en echelon pattern within an approximately 10-meter-wide zone. Trenches across the Little River fault document a thrust fault oriented 110°/45° with at least 10 centimeters (cm) of displacement. The Little River fault is marked by a flexure or scarp with a height of 5-30 cm and a local maximum height of 50 cm. Southwest-side-up displacement is consistent along the fault and indicates thrust kinematics. The strike of the Little River fault changes from 110° to 130° near Duncan Farm where it crosses Chestnut Grove Church Road (NC Rt. 1426). Although the surface expression of the fault terminates and (or) is imperceptible at both ends, deformation is still clear in residual surface maps showing the change between pre- and post-earthquake lidar elevations. Other coseismic features documented are rockfalls, ground cracks, fissures, lateral spreading on a sandbar, and mass-wasting scarps; several possible faults that were identified from lidar analyses strike E-W and oblique to the Little River fault.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date October 18, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date October 18, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/55ca7847fc6a8e7f89e6b45825d09c8f
Identifier USGS:6273cbacd34e8d45aa6e1d5d
Data Last Modified 20231016
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 3382747d-ebfa-4534-aa49-186aaf6fc294
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 32cb74ee1a4776452fd106ae7e3cc8c1df5212981c9891bae973acfe1237a904
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.