Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Data release for Wind turbine wakes can impact down-wind vegetation greenness

Metadata Updated: July 6, 2024

Global wind energy has expanded 5-fold since 2010 and is predicted to expand another 8–10-fold over the next 30 years. Wakes generated by wind turbines can alter downwind microclimates and potentially downwind vegetation. However, the design of past studies has made it difficult to isolate the impact of wake effects on vegetation from land cover change. We used hourly wind data to model wake and non-wake zones around 17 wind facilities across the U.S. and compared remotely-sensed vegetation greenness in wake and non-wake zones before and after construction. We located sampling sites only in the dominant vegetation type and in areas that were not disturbed before or after construction. We found evidence for wake effects on vegetation greenness at 10 of 17 facilities for portions of, or the entire growing season. Evidence included statistical significance in Before After Control Impact statistical models, differences >3% between expected and observed values of vegetation greenness, and consistent spatial patterns of anomalies in vegetation greenness relative to turbine locations and wind direction. Wakes induced both increases and decreases in vegetation greenness, which may be difficult to predict prior to construction. The magnitude of wake effects depended primarily on precipitation and to a lesser degree aridity. Wake effects did not show trends over time following construction, suggesting the changes impact vegetation greenness within a growing season, but do not accrue over years. Even small changes in vegetation greenness, similar to those found in this study, have been seen to affect higher trophic levels. Given the rapid global growth of wind energy, and the importance of vegetation condition for agriculture, grazing, wildlife, and carbon storage, understanding how wakes from wind turbines impact vegetation is essential to exploit or ameliorate these effects.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/4238efc603c3daf0dbac6d63d30bef7f
Identifier USGS:61d34259d34ed79293fe6d46
Data Last Modified 20220927
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id f07dcb68-77b5-4b82-a19b-e4ccfe3abe93
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -124.762779,24.520416,-66.948891,49.383297
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash c640d4c8a1823da9e5f520d643ed80297a9eb7b16792face0a8a7d81f326427f
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -124.762779, 24.520416, -124.762779, 49.383297, -66.948891, 49.383297, -66.948891, 24.520416, -124.762779, 24.520416}

Didn't find what you're looking for? Suggest a dataset here.