Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Data for Radium Mobility and the Age of Groundwater in Public-drinking-water Supplies from the Cambrian-Ordovician Aquifer System, North-Central USA: Table 2. Detailed information on the calibration of dissolved gas models to dissolved gas concentrations (neon, argon, krypton, xenon, and nitrogen).

Metadata Updated: July 6, 2024

High radium (Ra) concentrations in potable portions of the Cambrian-Ordovician (C-O) aquifer system were investigated using water-quality data and environmental tracers ( 3H, 3Hetrit, SF6 , 14C and 4Herad) of groundwater age from 80 public-supply wells (PSWs). Groundwater ages were estimated by calibration of tracers to lumped parameter models and ranged from modern (1 Myr) in the most downgradient, confined portions of the potable system. More than 80 and 40 percent of mean groundwater ages were older than 1000 and 50,000 yr, respectively. Anoxic, Fe-reducing conditions and increased mineralization develop with time in the aquifer system and mobilize Ra into solution resulting in the frequent occurrence of combined Ra (Rac = 226Ra + 228Ra) at concentrations exceeding the USEPA MCL of 185 mBq/L (5 pCi/L). The distribution of the three Ra isotopes comprising total Ra (Rat = 224Ra + 226Ra + 228Ra) differed across the aquifer system. The concentrations of 224Ra and 228Ra were strongly correlated and comprised a larger proportion of the Rat concentration in samples from the regionally unconfined area, where arkosic sandstones provide an enhanced source for progeny from the 232Th decay series. 226Ra comprised a larger proportion of the Rat concentration in samples from downgradient confined regions. Concentrations of Rat were significantly greater in samples from the regionally confined area of the aquifer system because of the increase in 226Ra concentrations there as compared to the regionally unconfined area. 226Ra distribution coefficients decreased substantially with anoxic conditions and increasing ionic strength of groundwater (mineralization), indicating that Ra is mobilized to solution from solid phases of the aquifer as sorption capacity is diminished. The amount of 226Ra released from solid phases by alpha-recoil mechanisms and retained in solution increases relative to the amount of Ra sequestered by adsorption processes or co-precipitation with barite as sorption capacity and the concentration of Ba decreases. Although 226Ra occurred at concentrations greater than 224Ra or 228Ra, the ingestion exposure risk was greater for 228Ra owing to its greater toxicity. In addition, 224Ra added substantial alpha-particle radioactivity to potable samples from the C-O aquifer system. Thus, monitoring for Ra isotopes and gross-alpha-activity (GAA) is important in upgradient, regionally unconfined areas as downgradient, and GAA measurements made within 72 h of sample collection would best capture alpha-particle radiation from the short-lived 224Ra.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/9c7e87e5c1f95a75a47df64dd74cdd50
Identifier USGS:59ee67abe4b0220bbd976325
Data Last Modified 20200826
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id bb24364e-ab90-4d22-9011-dd6f44ac4ce6
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -97.514648437199,35.924290222685,-82.22167968781,49.410688528111
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 06f164e5390bd8721d46ed9e173d16964f0702689bb74b3170198fde064c338f
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -97.514648437199, 35.924290222685, -97.514648437199, 49.410688528111, -82.22167968781, 49.410688528111, -82.22167968781, 35.924290222685, -97.514648437199, 35.924290222685}

Didn't find what you're looking for? Suggest a dataset here.