Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Data associated with "Zeeman-resolved Autler-Townes splitting in Rydberg atoms with a tunable RF resonance and a single transition dipole moment"

Metadata Updated: March 14, 2025

Data associated with the publication: "Zeeman-resolved Autler-Townes splitting in Rydberg atoms with a tunable RF resonance and a single transition dipole moment"Applying a magnetic field as a method for tuning the frequency of Autler-Townes splitting for Rydberg electrometry has recently been demonstrated. In the corresponding paper, we provide a theoretical understanding of EIT signals in the presence of a large magnetic field, as well as demonstrate some advantages of this technique over traditional Autler-Townes based electrometry. We show that a strong magnetic field provides a well-defined quantization axis regardless of the optical field polarizations, we demonstrate that by separating the $m_J$ levels of the Rydberg state we can perform an Autler-Townes splitting with a single participating dipole moment, and we demonstrate recovery of signal strength by populating a single $m_J$ level using circularly polarized light.Included in this dataset is the data associated with every plot in the paper, separated by figure number, including:FIgure 2: Measured EIT signals in the presence of a strong(1.85(1) mT) magnetic field either aligned with or orthogonalto the polarization axis. Figure 3: Theoretical EIT signals for Cs in the presence ofa 1.85(1) mT magnetic field for light polarizations alignedto or orthogonal to the magnetic field.Figure 4: Measured Autler-Townes splittings in individual mJlevels via the 58D5/2(mJ = ±5/2) ? 59P3/2(mJ = ±3/2)transitions of Cs in the presence of 2.78(1) mT.Figure 5: Measured Autler-Townes splittings on the Cs58D5/2 ? 59P3/2 transition with and without mJ selectivityfor various RF fields up to 3.08 V/m. Figure 6: EIT in the presence of a large magnetic field using circularly polarized light.EIT signals correspond to voltage traces (collected on an oscilloscope) of a balanced photodiode as laser frequencies are scanned. The x axis is converted from a time series of each voltage to a frequency using a reference cell. The scaling is determined by measuring the difference between the EIT peaks corresponding to the D5/2 and D3/2 Rydberg states, and the zero is generally taken to be the location of the D5/2 EIT peak.

Access & Use Information

Public: This dataset is intended for public access and use. License: See this page for license information.

Downloads & Resources

Dates

Metadata Created Date December 15, 2023
Metadata Updated Date March 14, 2025

Metadata Source

Harvested from NIST

Additional Metadata

Resource Type Dataset
Metadata Created Date December 15, 2023
Metadata Updated Date March 14, 2025
Publisher National Institute of Standards and Technology
Maintainer
Identifier ark:/88434/mds2-3102
Data First Published 2023-11-16
Language en
Data Last Modified 2023-11-12 00:00:00
Category Physics:Optical physics, Physics:Atomic, molecular, and quantum
Public Access Level public
Bureau Code 006:55
Metadata Context https://project-open-data.cio.gov/v1.1/schema/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 4e6d7f1c-6ed0-48ca-8f12-f11565f5db3b
Harvest Source Id 74e175d9-66b3-4323-ac98-e2a90eeb93c0
Harvest Source Title NIST
Homepage URL https://data.nist.gov/od/id/mds2-3102
License https://www.nist.gov/open/license
Program Code 006:045
Source Datajson Identifier True
Source Hash 179e281e12374ff96b3facccdf3b78336bc5745ecfefeee51aed7e4372b124b4
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.