Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Complex trait analysis of the mouse striatum: independent QTLs modulate volume and neuron number

Metadata Updated: September 6, 2025

Background The striatum plays a pivotal role in modulating motor activity and higher cognitive function. We analyzed variation in striatal volume and neuron number in mice and initiated a complex trait analysis to discover polymorphic genes that modulate the structure of the basal ganglia.

      Results
      Brain weight, brain and striatal volume, neuron-packing density and number were estimated bilaterally using unbiased stereological procedures in five inbred strains (A/J, C57BL/6J, DBA/2J, BALB/cJ, and BXD5) and an F2 intercross between A/J and BXD5. Striatal volume ranged from 20 to 37 mm3. Neuron-packing density ranged from approximately 50,000 to 100,000 neurons/mm3, and the striatal neuron population ranged from 1.4 to 2.5 million. Inbred animals with larger brains had larger striata but lower neuron-packing density resulting in a narrow range of average neuron populations. In contrast, there was a strong positive correlation between volume and neuron number among intercross progeny. We mapped two quantitative trait loci (QTLs) with selective effects on striatal architecture. Bsc10a maps to the central region of Chr 10 (LRS of 17.5 near D10Mit186) and has intense effects on striatal volume and moderate effects on brain volume. Stnn19a maps to distal Chr 19 (LRS of 15 at D19Mit123) and is associated with differences of up to 400,000 neurons among animals.


      Conclusion
      We have discovered remarkable numerical and volumetric variation in the mouse striatum, and we have been able to map two QTLs that modulate independent anatomic parameters.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/dvr7-vrrz
Data First Published 2025-07-13
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 684be4c1-0dac-4ee8-8ae0-30bafb94fd92
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/dvr7-vrrz
Program Code 009:034
Source Datajson Identifier True
Source Hash ed1e6bbdd1ed2c733e5a393f4c3d5007c2238e31beb5431266070bc560e0280d
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.