Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Cholinergic and GABAergic pathways in fly motion vision

Metadata Updated: September 6, 2025

Background The fly visual system is a highly ordered brain structure with well-established physiological and behavioral functions. A large number of interneurons in the posterior part of the third visual neuropil, the lobula plate tangential cells (LPTCs), respond to visual motion stimuli. In these cells the mechanism of motion detection has been studied in great detail. Nevertheless, the cellular computations leading to their directionally selective responses are not yet fully understood. Earlier studies addressed the neuropharmacological basis of the motion response in lobula plate interneurons. In the present study we investigated the distribution of the respective neurotransmitter receptors in the fly visual system, namely nicotinic acetylcholine receptors (nAChRs) and GABA receptors (GABARs) demonstrated by antibody labeling.

      Results
      The medulla shows a laminar distribution of both nAChRs and GABARs. Both receptor types are present in layers that participate in motion processing. The lobula also shows a characteristic layering of immunoreactivity for either receptor in its posterior portion. Furthermore, immunostaining for nAChRs and GABARs can be observed in close vicinity of lobula plate tangential cells. Immunostaining of GABAergic fibers suggests that inhibitory inputs from the medulla are relayed through the lobula to the lobula plate rather than through direct connections between medulla and lobula plate.


      Conclusions
      The interaction of excitatory and inhibitory pathways is essential for the computation of visual motion responses and discussed in the context of the Reichardt model for motion detection.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/4j3r-vs3z
Data First Published 2025-07-13
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 324a691d-7bc0-4133-ab5b-ce6e4b3892f0
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/4j3r-vs3z
Program Code 009:033
Source Datajson Identifier True
Source Hash f7002f4c296e4e391a4ac6b20f2d817fcf72632b593339877ab537398e46ece0
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.