Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Center Innovation Fund: AFRC CIF Program

Metadata Updated: December 6, 2023

<p>The Armstrong Flight Research Center is NASA&rsquo;s primary center for atmospheric flight research and operations,&nbsp;with a vision &ldquo;to fly what others only imagine.&rdquo; We believe that flight validation and research is one of&nbsp;the crucial phases within the advancement of any NASA technology, and it is often the barrier to technology&nbsp;utilization by the private sector. We also believe that aerospace technology can be enhanced through flight&nbsp;early in the Technology Readiness Level (TRL) lifecycle. In fact, some research can be done only in flight. The&nbsp;CIF projects are examples of aerospace technologies that are theoretically advantageous but have had&nbsp;little TRL advancement or are at too early of a technology level for support through a NASA mission.</p><p>The focus for the program is on validating, developing, and testing new and innovative technologies.</p><p>The current&nbsp;technology areas for the projects included:<br />AFRC is currently looking into following Technical Capability areas (not in any priority order and not all inclusive):<br />1.&nbsp;&nbsp; &nbsp;Small launch Space Systems<br />Develop small launch space systems such as horizontal rockets that could launch to orbit small free-flying space platforms (e.g., cuestas, nanosats, picosats).<br />2.&nbsp;&nbsp; &nbsp;Altitude Compensating Rocket Systems<br />Design, build, and test altitude compensating rocket systems or sub-systems designed to operate the rocket efficiently across a wide range of altitudes. &nbsp;Subsystems such as Altitude Compensating Nozzles are being considered.<br />3.&nbsp;&nbsp; &nbsp;Aero Gravity Assist Systems<br />Design, build, and test an Aerogravity assist system which uses a close approach to the planet, dipping into the atmosphere, so the spacecraft can also use aerodynamic lift to further curve the trajectory.<br />4.&nbsp;&nbsp; &nbsp;Launch Vehicle and Spacecraft Adaptive Controls<br />Develop and test adaptive controls architectures speci?cally tailored for application to launch vehicles. &nbsp;Adaptive Controls for launch vehicles would include unique features of the &nbsp;aerospace vehicle, such as control-structure interaction, propellant slosh, sensor performance, and actuator dynamics. &nbsp;In addition, the analysis, veri?cation, and ?ight certi?cation framework for the control system must be addressed.<br />5.&nbsp;&nbsp; &nbsp;Autonomous Systems<br />AFRC is exploring concepts for advanced autonomous systems and collaborative autonomous operations that could be applied across aerospace vehicles to enhance effectiveness, survivability, and affordability.<br />6.&nbsp;&nbsp; &nbsp;Autonomy in a Safety Critical Framework<br />Armstrong Flight Research Center is interested in the flight demonstration of high level autonomy in a safety critical framework with applicability to man-rated air and space vehicles. &nbsp;This high level of autonomy is enabled through the use of multiple sensor platforms and algorithms with high computational demands. &nbsp;Increased computational capability through embedded high performance computing and implementation of resource efficient algorithms is needed to support this integration. &nbsp;Research into embedded high performance computing using multi-core processors, FPGA, GPU, DSP and associated development of toolchains and algorithms targeted to these platforms is needed in order to reduce the Size, Weight, and Power (SWaP) of the flight vehicles..<br />7.&nbsp;&nbsp; &nbsp;Space Weather Systems<br />Design, develop, and test measurement systems to provide the capability for on-demand, validated, and archived radiation measurements related to human tissue and avionics silicon upset co

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources



Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 6, 2023
Publisher Space Technology Mission Directorate
Identifier TECHPORT_161
Data First Published 2011-10-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id abe65c53-6503-4298-acba-97e52dc70569
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL
Program Code 026:000
Related Documents,,,,,,,
Source Datajson Identifier True
Source Hash 32ef37a1fe24c7ed745af74f4d8aaeedc98838c8dc523c603704738eff67e953
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.

An official website of the GSA's Technology Transformation Services

Looking for U.S. government information and services?