Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Census (Survey) Database Used for Demographic Analysis of Agassiz’s Desert Tortoise (Gopherus agassizii) on a 7.77 square km plot inside and outside the fenced Desert Tortoise Research Natural Area, Western Mojave Desert, USA, over a 34-year Period

Metadata Updated: October 1, 2025

We developed a model for analyzing multi-year demographic data for long-lived animals and used data from a population of Agassiz’s desert tortoise (Gopherus agassizii) at the Desert Tortoise Research Natural Area in the western Mojave Desert of California, USA, as a case study. The study area was 7.77 square kilometers and included two locations: inside and outside the fenced boundary. The wildlife-permeable, protective fence was designed to prevent entry from vehicle users and sheep grazing. We collected mark-recapture data from 1,123 tortoises during 7 annual surveys consisting of two censuses each over a 34-year period. We used a Bayesian modeling framework to develop a multistate Jolly-Seber model because of its ability to handle unobserved (latent) states and modified this model to incorporate the additional data from non-survey years. For this model we incorporated 3 size-age states (juvenile, immature, adult), sex (female, male), two location states (inside and outside the fenced boundary) and 3 survival states (not-yet-entered, entered/alive, and dead/removed). We calculated population densities and estimated probabilities of growth of the tortoises from one size-age state to a larger size-age state, survival after 1 year and 5 years, and detection. Our results show a declining population with low estimates for survival after 1 year and 5 years. The probability for tortoises to move from outside to inside the boundary fence was greater than for tortoises to move from inside the fence to outside. The probability for detecting tortoises differed by size-age state and was lowest for the smallest tortoises and highest for the adult tortoises. The framework for the model can be used to analyze other animal populations where vital rates are expected to vary depending on multiple individual states. The model was incorporated into the manuscript that included several other databases for publication in Wildlife Monographs in 2020 by Berry et al.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date September 13, 2025
Metadata Updated Date October 1, 2025

Metadata Source

Harvested from DOI USGS DCAT-US

Additional Metadata

Resource Type Dataset
Metadata Created Date September 13, 2025
Metadata Updated Date October 1, 2025
Publisher U.S. Geological Survey
Maintainer
Identifier http://datainventory.doi.gov/id/dataset/usgs-60b7b52dd34e86b938872519
Data Last Modified 2021-08-27T00:00:00Z
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://ddi.doi.gov/usgs-data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id de1f10a2-5270-4b0e-977f-54af9ab7843f
Harvest Source Id 2b80d118-ab3a-48ba-bd93-996bbacefac2
Harvest Source Title DOI USGS DCAT-US
Metadata Type geospatial
Old Spatial -117.9514, 35.1691, -117.8429, 35.3329
Source Datajson Identifier True
Source Hash 35943b89c4e79c39e8bd95d78906141b524d8cd2b0cc3cd2df3812d523cbf337
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -117.9514, 35.1691, -117.9514, 35.3329, -117.8429, 35.3329, -117.8429, 35.1691, -117.9514, 35.1691}

Didn't find what you're looking for? Suggest a dataset here.