Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Blood substitutes: Haemoglobin therapeutics in clinical practice

Metadata Updated: September 6, 2025

Early approaches to the development of oxygen carriers involved the use of stroma-free hemoglobin solutions. These solutions did not require blood typing or crossmatching and could be stored for long periods. In addition, a variety of methods have been developed in chemically modifying and stabilizing the hemoglobin molecule. Several hemoglobin therapeutics are now in clinical trials as temporary alternatives to blood or as therapeutic agents for ischemia. The various hemoglobin products under development are derived from three principal sources: human, bovine and genetically engineered hemoglobin. Diaspirin cross-linked hemoglobin (DCLHb), administered at doses ranging from approximately 20-1000 ml, has been investigated in a number of clinical trials in patients undergoing orthopedic, abdominal aortic repair, major abdominal surgery, cardiac surgery and in critically ill patients with septic shock. In several studies, DCLHb was effective in avoiding the transfusion. However, Baxter Healthcare Corporation (Chicago, Illinois, USA) stopped the development of DCLHb after two unsuccessful trials in trauma patients. Bovine polymerized hemoglobin has also been extensively studied. Several phase II and phase III trials have been performed with this product in hemorrhagic surgery, cardiac surgery and vascular surgery, but data have not yet been published. Hemoglobin therapeutics could provide an important new option as an alternative to blood transfusion. Furthermore, they may be able to provide an immediate on-site replacement for traumatic blood loss, prevent global ischemia and organ failure, treat focal ischemia, and provide effective hemodynamic support for septic shock-induced hypotension.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025

Metadata Source

Harvested from Healthdata.gov

Additional Metadata

Resource Type Dataset
Metadata Created Date July 24, 2025
Metadata Updated Date September 6, 2025
Publisher National Institutes of Health
Maintainer
NIH
Identifier https://healthdata.gov/api/views/8fqi-twz6
Data First Published 2025-07-14
Data Last Modified 2025-09-06
Category NIH
Public Access Level public
Bureau Code 009:25
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://healthdata.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id d2f162e5-3498-4eca-90de-ef9436d5c926
Harvest Source Id 651e43b2-321c-4e4c-b86a-835cfc342cb0
Harvest Source Title Healthdata.gov
Homepage URL https://healthdata.gov/d/8fqi-twz6
Program Code 009:032
Source Datajson Identifier True
Source Hash f2f6cbc2f44031cee639354ca0e261ebab0c8aa564d99254240350f0e9429caa
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.