Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Australia Telescope Low-Brightness Survey Source Catalog

Metadata Updated: September 19, 2025

The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6 arcseconds angular resolution and 72 microJansky per beam (µJy/beam) rms noise. The images (centered at RA 00<sup>h</sup> 35<sup>m</sup> 00<sup>s</sup>, Dec -67<sup>o</sup> 00' 00" and RA 00<sup>h</sup> 59<sup>m</sup> 17<sup>s</sup>, Dec -67<sup>o</sup> 00' 00", J2000 epoch) cover 8.42 deg<sup>2</sup> sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list of 1366 1.4-GHZ sources; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50 arcseconds. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists - as opposed to component lists - and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density. This table was created by the HEASARC in April 2013 based on an electronic version of Table 2 from the reference paper that was obtained from the ApJ web site.. This is a service provided by NASA HEASARC .

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025
Publisher High Energy Astrophysics Science Archive Research Center
Maintainer
Identifier ivo://nasa.heasarc/atlbs1p4gh
Data Last Modified 2025-09-10
Category Astrophysics
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 887e3e78-e5b5-48e6-a808-5d24993c651d
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://heasarc.gsfc.nasa.gov/W3Browse/all/atlbs1p4gh.html
Program Code 026:000
Source Datajson Identifier True
Source Hash 8cf2d96a640d0609d9b9bdb358af2074496a41735f0f741f70bb6936d6722170
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.