Anomaly Detection in Sequences

Metadata Updated: November 12, 2020

We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that arise from recordings of switch sensors in the cockpits of commercial airliners. While the algorithms we present are general and domain-independent, we focus on a specific problem that is critical to determining system-wide health of a fleet of aircraft. The approach taken uses unsupervised clustering of sequences using the normalized length of he longest common subsequence (nLCS) as a similarity measure, followed by a detailed analysis of outliers to detect anomalies. In this method, an outlier sequence is defined as a sequence that is far away from a cluster. We present new algorithms for outlier analysis that provide comprehensible indicators as to why a particular sequence is deemed to be an outlier. The algorithm provides a coherent description to an analyst of the anomalies in the sequence when compared to more normal sequences.

The final section of the paper demonstrates the effectiveness of sequenceMiner for anomaly detection on a real set of discrete sequence data from a fleet of commercial airliners.

We show that sequenceMiner discovers actionable and operationally significant safety events. We also compare our innovations with standard HiddenMarkov Models, and show that our methods are superior

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Dashlink
Unique Identifier Unknown
Identifier DASHLINK_3
Data First Published 2010-09-09
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Homepage URL
Program Code 026:029
Source Datajson Identifier True
Source Hash c8bbc5f2ecf95b4c0f5d2ed98f1d7a7e970ca46c
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.