Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Aircraft Flux-Detrended: Univ. Col. (FIFE)

Metadata Updated: September 19, 2025

The NCAR King Air participation in FIFE-1987 and FIFE-1989 was part of a coordinated atmospheric boundary layer component which included other aircraft, surface measurements, balloon-borne profiles, SODAR, and lidar remote sensing. The chief objective of the boundary layer component was to describe the structure of the atmospheric boundary layer over the FIFE study area, increase knowledge of the physical processes active in the daytime boundary layer, and explore the relationship of surface properties to the time and spatial variation in the structure of the boundary layer. The phenomena studied were the daytime convective boundary layer structure and physical processes. This study used airborne measurement of vertical and horizontal wind gusts, humidity, potential temperature, mean horizontal wind speed, and horizontal linear trends of temperature, humidity, radiation. Fluxes of sensible heat, moisture, and momentum were estimated from fast response wind gust, temperature, and humidity measurements; these fluxes were evaluated from data whose linear trend and mean were removed. In addition several radiation parameters were also measured.. Several radiation parameters were also measured (e.g., global short and longwave, upwelling, and downwelling). Altitude of the aircraft was measured by radar and pressure; radar was more accurate but was only valid below about 930 m. Geographical position was measured by an inertial navigation system. All level legs of a flight mission were flown at a constant pressure altitude, thus the altitude of the aircraft over the surface varied. In general, the detrended data set is of excellent overall quality with very little loss of data. Vertical winds were sampled at an effective rate of 5 samples per second instead of the customary 10 samples per second; this had negligible effect on the fluxes but could compromise estimates of turbulence dissipation. Fluxes were estimated using raw, detrended and high-pass filtered data. From extensive analysis the FIFE Boundary Layer Group recommends using the detrended data.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025
Publisher ORNL_DAAC
Maintainer
Identifier 10.3334/ORNLDAAC/5
Data Last Modified 2025-09-10
Category Earth Science
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 8b1b276a-8bbd-4660-868f-f2daadedcac0
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://search.earthdata.nasa.gov/search?q=fife_AF_dtrnd_ncar_5&ac=true
Old Spatial {"WestBoundingCoordinate":-102.0,"NorthBoundingCoordinate":40.0,"EastBoundingCoordinate":-95.0,"SouthBoundingCoordinate":37.0},"CARTESIAN"
Program Code 026:000
Source Datajson Identifier True
Source Hash 3187036cc2cc64889591a86b6db17285b141e0f3d397f8c1f0986c81f5fa81b2
Source Schema Version 1.1
Spatial
Temporal 1987-05-26/1987-05-26

Didn't find what you're looking for? Suggest a dataset here.