Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Aboveground Biomass Density for High Latitude Forests from ICESat-2, 2020

Metadata Updated: September 19, 2025

This dataset provides estimates of Aboveground dry woody Biomass Density (AGBD) for high northern latitude forests at a 30-m spatial resolution. It is designed both for boreal-wide mapping and filling the northern spatial data gap from NASA's Global Ecosystem Dynamics Investigation (GEDI) project. Mapping forest aboveground biomass is essential for understanding, monitoring, and managing forest carbon stocks toward climate change mitigation. The AGBD estimates cover the extent of high latitude boreal forests and extend southward to 50 degrees latitude outside the boreal zone. AGBD was predicted using two modeling steps: 1) Ordinary Least Squares (OLS) regression related field plot measurements of AGBD to NASA's ICESat-2 30-m lidar samples, and 2) random forest models were used to extend estimates beyond the field plots by relating ICESat-2 AGBD predictions to wall-to-wall covariate stacks from Harmonized Landsat Sentinel-2 (HLS) and the Copernicus DEM. Per-pixel uncertainties are estimated from bootstrapping both models. Non-vegetated areas (e.g. built up, water, rock, ice) were masked out. HLS composites and ICESat-2 data were from 2019-2021; three years of conditions were aggregated into the circa 2020 map. ICESat-2 data were filtered to include only strong beams, growing seasons (June through September), solar elevations less than 5 degrees, snow free land (snow flag set to 1), and "msw_flag" equal to 0 (clear skies and no observed atmospheric scattering). ICESat-2's ATL08 product was resampled to a 30-m spatial resolution to better match both the field plots and mapped pixels. HLS data (L30HLS) were used to create a greenest pixel composite of growing season multispectral data, which was then used to compute a suite of vegetation indices: NDVI, NDWI, NBR, NBR2, TCW, TCG. These were then used, in combination with the slope and elevation data from the Copernicus DEM product, to predict 30-m AGBD per 90-km tile. Estimates of mean AGBD with standard deviation are provided in cloud-optimized GeoTIFF (CoG) format. Training data are in comma-separated values (CSV) format. A polygon map of data tiles is included as a GeoPackage file and a Shapefile.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date April 11, 2025
Metadata Updated Date September 19, 2025
Publisher ORNL_DAAC
Maintainer
Identifier 10.3334/ORNLDAAC/2186
Data Last Modified 2025-09-10
Category Earth Science
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 450916c7-8f4a-4280-a672-2224bcb2aac9
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://search.earthdata.nasa.gov/search?q=Boreal_AGB_Density_ICESat2_2186&ac=true
Old Spatial {"WestBoundingCoordinate":-179.818,"NorthBoundingCoordinate":78.5313,"EastBoundingCoordinate":178.399,"SouthBoundingCoordinate":43.705},"CARTESIAN"
Program Code 026:000
Source Datajson Identifier True
Source Hash 5889bdbfda56ffb455b7c22df01e34db02af3280283010d08da89fe1c2a7391b
Source Schema Version 1.1
Spatial
Temporal 2019-06-01/2019-06-01

Didn't find what you're looking for? Suggest a dataset here.