Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

A knowledge-based system approach for sensor fault modeling, detection and mitigation

Metadata Updated: December 7, 2023

Sensors are vital components for control and advanced health management techniques. However, sensors continue to be considered the weak link in many engineering applications since often they are less reli- able than the system they are observing. This is in part due to the sensors’ operating principles and their susceptibility to interference from the environment. Detecting and mitigating sensor failure modes are becoming increasingly important in more complex and safety-critical applications. This paper reports on different techniques for sensor fault detection, disambiguation, and mitigation. It presents an expert system that uses a combination of object-oriented modeling, rules, and semantic networks to deal with the most common sensor faults, such as bias, drift, scaling, and dropout, as well as system faults. The paper also describes a sensor correction module that is based on fault parameters extraction (for bias, drift, and scaling fault modes) as well as utilizing partial redundancy for dropout sensor fault modes). The knowledge-based system was derived from the results obtained in a previously deployed Neural Network (NN) application for fault detection and disambiguation. Results are illustrated on an electromechanical actuator application where the system faults are jam and spalling. In addition to the functions implemented in the previous work, system fault detection under sensor failure was also modeled. The paper includes a sensitivity analysis that compares the results previously obtained with the NN. It concludes with a discussion of similarities and differences between the two approaches and how the knowledge based system provides additional functionality compared to the NN implementation.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Publisher Dashlink
Maintainer
Identifier DASHLINK_688
Data First Published 2013-04-10
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 1cd0be95-d865-40e0-bae6-1bcc56e7de29
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/688/
Program Code 026:029
Source Datajson Identifier True
Source Hash d060668ede74950605cb3ecfc1fe3621781b8b40416748e521fd96d4f42e72bf
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.