Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

A Bayesian Framework for Remaining Useful Life Estimation

Metadata Updated: April 10, 2025

The estimation of remaining useful life (RUL) of a faulty component is at the center of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. This is especially true for aerospace systems, where unanticipated subsystem downtime may lead to catastrophic failures. RUL prediction needs to contend with multiple sources of error like modeling inconsistencies, system noise and degraded sensor fidelity. Bayesian theory of uncertainty management provides a way to contain these problems by integrating out the nuisance variables. We use the Relevance Vector Machine (RVM), for model development. RVM is a Bayesian treatment of the well known Support Vector Machine (SVM), a kernel-based regression/classification technique. This model is next used in a Particle Filter (PF) framework. Statistical estimates of the noise in the system and anticipated operational conditions are processed to provide estimates of RUL in the form of a probability density function (PDF). Validation of this approach on experimental data collected from Li-ion batteries is presented.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date April 10, 2025
Publisher Dashlink
Maintainer
Identifier DASHLINK_747
Data First Published 2013-05-13
Data Last Modified 2025-03-31
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id be88c40d-9f33-4fa5-a40a-456a62920353
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/747/
Program Code 026:029
Source Datajson Identifier True
Source Hash 58b8ee661689cbae63dd2d6fe22a611df310f3e39bf7dfefbf1e38d94d7c84bb
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.