-
Federal
Chlorophyll-a Long-term Mean, 1998-2018 - American Samoa
National Oceanic and Atmospheric Administration, Department of Commerce —
Chlorophyll-a, is a widely used proxy for phytoplankton biomass and an indicator for changes in phytoplankton production. As an essential source of energy in the... -
Federal
Coral Favorability: Non-Managed Conditions: Present - American Samoa
National Oceanic and Atmospheric Administration, Department of Commerce —
Many aspects of the environment are outside the control of local or regional resource managers. These conditions may require concerted global action to affect change... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2030 Intermediate-Low Scenario: 50 Days Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2070 Low Scenario: 50 Days Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2030 Intermediate-High Scenario: 50 Days Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: High-Tide Flooding: 2040 Intermediate-Low Scenario
National Oceanic and Atmospheric Administration, Department of Commerce —
This high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred to as a... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2080 Intermediate-Low Scenario: 50 Days Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2030 Intermediate Scenario: 20 Days Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: High-Tide Flooding: 2030 Intermediate-High Scenario
National Oceanic and Atmospheric Administration, Department of Commerce —
This high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred to as a... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2100 Intermediate Scenario: 50 Days Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: High-Tide Flooding: 2070 Intermediate-Low Scenario
National Oceanic and Atmospheric Administration, Department of Commerce —
This high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred to as a... -
Federal
Sea Level Rise: American Samoa: High-Tide Flooding: 2100 Intermediate-High Scenario
National Oceanic and Atmospheric Administration, Department of Commerce —
This high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred to as a... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2040 Intermediate-High Scenario: 1 Day Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: High-Tide Flooding: 2090 Intermediate-Low Scenario
National Oceanic and Atmospheric Administration, Department of Commerce —
This high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred to as a... -
Federal
Sea Level Rise: American Samoa: High-Tide Flooding: 2080 Intermediate-Low Scenario
National Oceanic and Atmospheric Administration, Department of Commerce —
This high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred to as a... -
Federal
Sea Level Rise: American Samoa: High-Tide Flooding: 1-Ft Scenario
National Oceanic and Atmospheric Administration, Department of Commerce —
This high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred to as a... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2030 Intermediate-High Scenario: 1 Day Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred... -
Federal
Sea Level Rise: American Samoa: Extreme High-Tide Flooding: 2050 Intermediate-High Scenario: 1 Day Per Year
National Oceanic and Atmospheric Administration, Department of Commerce —
This extreme high-tide flooding layer provides a prediction of future sea level rise (SLR) inundation and was produced using a passive flooding model, often referred...