Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

2D micromodel studies of pore-throat clogging by pure fine-grained sediments and natural sediments from NGHP-02, offshore India

Metadata Updated: October 29, 2023

Fine-grained sediments, or “fines,” are nearly ubiquitous in natural sediments, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can be mobilized and subsequently clog flow pathways while methane is being extracted from gas hydrate as an energy resource. Using two-dimensional (2D) micromodels to test the conditions in which clogging occurs provides insights for choosing production operation parameters that optimize methane recovery in the field. During methane extraction, several processes can alter the mobility and clogging potential of fines: (1) fluid flow as the formation is depressurized to release methane from gas hydrate, (2) shifting pore-fluid chemistry as pore-fluid brine freshens as a result of pure water released from dissociating gas hydrate, and (3) the migration of gas/water interfaces, which are created as gas evolves from dissociating gas hydrate. In this study, 2D micromodel experiments were conducted on a selection of pure fines, natural sediments, pore-fluids, and micromodel pore-throat sizes to evaluate fines migration and changes in clogging behavior resulting from methane gas production and pore-water freshening during hydrate dissociation. Additionally, tests were run with and without an invading gas phase (carbon dioxide) to test the importance of a moving meniscus on fines mobility and clogging. The endmember fine particles chosen for this research included silica silt, mica, calcium carbonate, diatoms, kaolinite, illite, and bentonite (primarily made of montmorillonite). The pore fluids included deionized water, sodium chloride brine (2 molar concentration), and carbon dioxide gas. The microfluidic pore models, used as porous media analogs, were fabricated with pore-throat widths of 20, 40, 60 and 100 micrometers to cover the range of anticipated pore throat sizes sampled during NGHP-02. This dataset provides a clogging diagram showing how grain size, fines concentration, pore fluid chemistry and mobile interfaces define the clogging behavior of the pure fines. This fundamental properties diagram helps interpret the clogging behavior of three natural samples also tested for this dataset. The natural samples were collected during NGHP-02. This research shows that in addition to the expected dependence of clogging on the ratio of particle-to-pore-throat size, pore-fluid chemistry is also an important factor because the interaction between a particular type of fine and pore fluid influences that fine’s capacity to cluster, clump together, and thereby increase the effective particle size relative to the pore-throat width. The presence of a moving gas/fluid meniscus increases the clogging potential regardless of fine type because the advancing meniscus tends to gather and concentrate the fines.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date October 29, 2023

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date October 29, 2023
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/feac63e1fdefcaff010da6c9a42f0378
Identifier USGS:5b0da47ce4b0c39c934b0775
Data Last Modified 20200806
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 9c148651-fb87-465c-956c-05f9d479c100
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial 82.9421,16.5691,84.197675,17.438455
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash eb2533a76547cdabd158df74a2846f30d337a79f419a62e616a87205e7707626
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": 82.9421, 16.5691, 82.9421, 17.438455, 84.197675, 17.438455, 84.197675, 16.5691, 82.9421, 16.5691}

Didn't find what you're looking for? Suggest a dataset here.