Wideband Autonomous Cognitive Radios for Networked Satellites Communications, Phase II

Metadata Updated: July 17, 2020

Wideband Autonomous Cognitive Radios (WACRs) are advanced radios that have the ability to sense state of the RF spectrum and the network and self-optimize its operating mode in response to this sensed state. During the just finished Phase I STTR project, Bluecom Systems was able to develop a comprehensive design for realizing such a WACR and demonstrate the proof-of-concept operation in a hardware-in-the-loop simulation. The developed design consists of three modules: a cognitive engine, a Software-defined radio (SDR) platform and a reconfigurable RF front-end. The key module that makes the radio a WACR is the cognitive engine that acts as the brain of the system. The objective of this Phase II project is to prototype a Space Telecommunications Radio System (STRS)-compliant plug-n-play cognitive engine, called the Radiobot 1.0, that can transform any suitably designed SDR in to a WACR.

During Phase II, Bluecom will build on the success of Phase I to develop a suite of algorithms that will make up the cognitive engine: Algorithms for spectrum knowledge acquisition and protocols for cognitive communications. The latter will specifically be aimed at networks formed by clusters of smaller satellites such as CubeSats. Next, these algorithms will be implemented on an FPGA System-on-Chip (SoC). Radiobot 1.0 prototype will be completed by developing a plug-n-play interface between the FPGA-implemented cognitive engine and any STRS-compliant SDR. WACR technology operation will be demonstrated by integrating this Radiobot 1.0 cognitive engine with suitable SDR platforms and in particular those that operate in Ka band.

Beyond obvious benefits to NASA in realizing autonomous and intelligent communication networks required to exploit the full potential of networked clusters of CubeSats, Radiobot 1.0 will also find commercial applications in first-responder/emergency/public safety communications, autonomous systems and drones as well as many other military communications.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_92572
Maintainer
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 69ca8f0d-d9c4-4494-9ce0-b54782644e2a
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2018-10-01
Homepage URL https://techport.nasa.gov/view/92572
Data Last Modified 2020-01-29
Program Code 026:027
Source Datajson Identifier True
Source Hash a3d2aa4cacb6cd51a4542babea8b2038de6b1c19
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.