Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

State-Level Drivers of Future Fine Particulate Matter Mortality in the United States

Metadata Updated: November 12, 2020

Future fine particulate matter (PM2.5) concentrations and health impacts will be largely determined by factors such as energy use, fuel choices, emission controls, state and national policies, and demographics. In this study, a human-earth system model is used to estimate US state-level PM2.5 mortality costs from 2015 to 2050 considering current major air quality and energy regulations. The Logarithmic Mean Divisia Index is applied to quantify the contributions of socioeconomic and energy factors to future changes in PM2.5 mortality costs. National PM2.5 mortality costs are estimated to decrease by 25% from 2015 to 2050, primarily driven by decreases in energy intensity and decreases in PM2.5 mortality cost per unit consumption of electric sector coal and transportation liquids. These factors together contribute to 68% of the net decrease, primarily because of technology improvements and air pollutant emission regulations. Furthermore, the results suggest that states with greater population and economic growth, but with fewer clean energy resources, are more likely to face significant challenges in reducing future PM2.5 mortality costs. In contrast, states with larger projected decreases in mortality costs have smaller increases in population and per capita GDP and greater decreases in electric sector coal share and PM2.5 mortality cost per unit fuel consumption. This dataset includes source code, input data, and model output from the Global Change Assessment Model (GCAM-USA) human-earth system model used in this study. It also includes Excel workbooks and R scripts used in producing the figures in the manuscript.

This dataset is associated with the following publication: Ou, Y., S. Smith, J.J. West, C. Nolte, and D. Loughlin. State-level drivers of future fine particulate matter mortality in the United States.. Environmental Research Letters. IOP Publishing LIMITED, Bristol, UK, 14(12): 124071, (2019).

Access & Use Information

Public: This dataset is intended for public access and use. License: See this page for license information.

Downloads & Resources

References

https://doi.org/10.1088/1748-9326/ab59cb

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from EPA ScienceHub

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher U.S. EPA Office of Research and Development (ORD)
Maintainer
Identifier https://doi.org/10.23719/1503444
Data Last Modified 2019-03-12
Public Access Level public
Bureau Code 020:00
Schema Version https://project-open-data.cio.gov/v1.1/schema
Harvest Object Id 85459e4f-0c2f-4bc7-9bfb-58f0aae13756
Harvest Source Id 04b59eaf-ae53-4066-93db-80f2ed0df446
Harvest Source Title EPA ScienceHub
License https://pasteur.epa.gov/license/sciencehub-license.html
Program Code 020:094
Publisher Hierarchy U.S. Government > U.S. Environmental Protection Agency > U.S. EPA Office of Research and Development (ORD)
Related Documents https://doi.org/10.1088/1748-9326/ab59cb
Source Datajson Identifier True
Source Hash 84b82eeb4f39a6c0448db03624cb67d6ee1c2df4
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.