Soft-Robotic Rover with Electrodynamic Power Scavenging

Metadata Updated: July 17, 2020

We propose a rover architecture for Europa and other planetary environments where soft robotics enables scientific investigation or human-precursor missions that cannot be accomplished with solar or nuclear power. This rover resembles a squid, with tentacle- like structures that serve both as electrodynamic tethers to harvest power from locally changing magnetic fields and as a means of bio-inspired propulsion. The electrical energy scavenged from the environment powers all rover subsystems, including one that electrolyzes H20. Electrolysis produces a mixture of H2 and O2 gas, which is stored internally in the body and limbs of this rover. Igniting this gas expands these internal chambers, causing shape change to propel the rover through fluid or perhaps along the surface of a planetary body. The Phase I effort constitutes advancement of this revolutionary rover concept from TRL 1 to TRL 2. The work will be conducted at Cornell University, led by PI Mason Peck and Co-I Robert Shepherd. If the concept eventually succeeds, it will enable amphibious exploration of gas-giant moons, notably Europa. It likely is relevant to other moons of Jupiter and Saturn with liquid lakes or oceans. Juno’s success notwithstanding, solar power near Jupiter is very limited. Furthermore, the recent cancellation of SMD’s ASRG technology motivates alternatives to nuclear power. The bio-inspired technologies we propose to consider bypass the need to power rovers with limited-lifetime batteries, large solar arrays, or nuclear power. In this one respect, it is a breakthrough concept. Beyond addressing issues of power, this rover concept also bypasses the difficulties of typical mechanisms in fluid through uniquely suited soft robotics. The expanding-gas locomotion concept is both exotic and eminently realizable, grounded in experimental work by our team.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_91342
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id 48d38d13-c037-4532-a090-b54f4fb17c5c
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2016-06-01
Homepage URL
Data Last Modified 2020-01-29
Program Code 026:027
Source Datajson Identifier True
Source Hash ede3fccded54c89ef98a0c1c9ef154ae65a16b4b
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.