Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Simulation-based Design and Validation of Automated Contingency Management for Propulsion Systems

Metadata Updated: December 7, 2023

This paper introduces a novel Prognostics-enhanced Automated Contingency Management (or ACM+P) paradigm based on both current health state (diagnosis) and future health state estimates (prognosis) for advanced autonomous systems. Including prognostics in ACM system allows not only fault accommodation, but also fault mitigation via proper control actions based on short term prognosis, and moreover, the establishment of a long term operational plan that optimizes the utility of the entire system based on long term prognostics. Technical challenges are identified and addressed by a hierarchical ACM+P architecture that allows fault accommodation and mitigation at various levels in the system ranging from component level control reconfiguration, system level control reconfiguration, to high level mission re-planning and resource redistribution. The ACM+P paradigm was developed and evaluated in a high fidelity Unmanned Aerial Vehicle (UAV) simulation environment with flight-proven baseline flight controller and simulated diagnostics and prognostics of flight control actuators. Simulation results are presented. The ACM+P concept, architecture and the generic methodologies presented in this paper are applicable to many advanced autonomous systems such as deep space probes, unmanned autonomous vehicles, and military and commercial aircraft.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Data Update Frequency irregular

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Publisher Dashlink
Maintainer
Identifier DASHLINK_893
Data First Published 2014-01-11
Data Last Modified 2020-01-29
Public Access Level public
Data Update Frequency irregular
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 089c469a-95bd-4aaf-b3aa-a3fa9defe2d6
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://c3.nasa.gov/dashlink/resources/893/
Program Code 026:029
Source Datajson Identifier True
Source Hash de58d9bd8ce035f30f6c7dd87a079fbcfd5991dc19f67f67ad5bb595e8603d21
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.