Robust Cryogenic Cavitation Modeling for Propulsion Systems Ground Test Facilities, Phase I

Metadata Updated: July 17, 2020

Rigorous ground testing mitigates space propulsion system risk by enabling advanced component and system level rocket propulsion development and by demonstrating that designs reliably meet the specified requirements over the operational envelope before the first flight. The development of advanced ground test technology components and systems that are capable of enhancing environment simulation, minimizing program test time, cost and risk and meeting environmental and safety regulations is focused on near-term products that augment existing state-of-the-art propulsion system test facilities. Thus improved capabilities to model and predict component behavior in harsh ground test environments are needed for enhanced facility design. In particular, components such as valves, check valves and chokes that are subjected to high pressure, high flow rate cryogenic environments will experience potentially damaging two phase flow effects such as cavitation. Robust cryogenic cavitation models for real fluids equations of state in the presence of mixed supersonic/subsonic flows are demonstrated to deal with poor solution convergence and numerical instabilities. The proposed innovation leverages modifications to the local preconditioning formulation of the Roe flux with a barotropic equation of state and uses a representative component flow problem to demonstrate the effectiveness of enhanced modifications to the cryogenic liquid tabular equation of state. Instabilities arising from the single temperature assumption in the two phase mixture equation of state, which must often be evaluated by extrapolating data too far from the saturation curve, are eliminated with a nonlinear temperature limiter that precludes non-physical behavior, such as imaginary mixture sound speeds. The result is an efficient, robust cryogenic cavitation model suitable for application to propulsion systems ground test facility component design and analysis efforts.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_89700
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id b88aef70-81dc-40e9-8ba3-0eaee38525a0
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2016-12-01
Homepage URL
Data Last Modified 2020-01-29
Program Code 026:027
Source Datajson Identifier True
Source Hash a077cafb9e8f0aac156e10a7d42676c04021f194
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.