Radiation Tolerant Temperature-Invariant Scintillation Modules, Phase II

Metadata Updated: November 12, 2020

Radiation detectors are an invaluable tool for space applications spanning planetary science, astrophysics, heliophysics, space weather, and dosimetry for human exploration. Scintillators are materials that generate a light flash with an intensity that is proportional to the ionizing energy deposited. However, scintillator efficiency gradually decays with increased exposure to radiation. For exploration missions to hostile environments, such as those around Jupiter, Venus or Mercury, large ionizing doses are expected for the scintillation material, rendering them useless. A common practice to mitigate dose effects is to anneal the scintillation materials. In addition, sensitivity, dictated by detector volume, is critical for science missions, such mapping H2O concentration over a planetary surface. This project will develop a scintillator module using advanced materials, such as Cs2LiYCl6(CLYC), LiSr2I5 (LSI), or Tl2LiYCl6 (TLYC), that provide both high-performance gamma ray and neutron spectroscopy within a single volume. Si photomultipliers (SiPM) will maximize the active volume relative to the total volume. The project will result in a large-volume, high-performance detector module, rigorously tested for flight, with protocols for annealing and science operation

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Maintainer
Identifier TECHPORT_93721
Data First Published 2019-04-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Homepage URL https://techport.nasa.gov/view/93721
Program Code 026:027
Source Datajson Identifier True
Source Hash a9987c90b2045a42c1195272bc7e5c954c3b777c
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.