Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

PCCT demonstration of flow rate versus pressure gradient measurements for determining permeability in fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02

Metadata Updated: October 28, 2023

Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured at ~300 meters water depth or more) and temperature is relatively low (but generally above freezing). The concentration of methane can be high enough to make certain gas hydrate occurrences potentially relevant as energy resources. To extract methane from gas hydrate, the in situ formation (generally a coarse-grained, gas-hydrate-bearing sediment interval) can be depressurized by drawing pore water out through a production well. As the pore pressure falls below the gas hydrate stability limit, the solid gas hydrate breaks down, releasing gas and water that migrate toward the production well for collection. How effectively the production well can depressurize the gas-hydrate-bearing interval depends on how permeable the overlying seal sediment is. If the seal is permeable, depressurizing the reservoir to extract methane causes water to flow out of the seal and into the reservoir. This can limit the ability of the production well to maintain the low reservoir pressure required to break down gas.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date June 1, 2023
Metadata Updated Date October 28, 2023

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date October 28, 2023
Publisher U.S. Geological Survey
Identifier USGS:5b69af6ce4b006a11f774f13
Data Last Modified 20200806
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id cebe0ac0-ae05-41c8-95f5-d95c9b9b11e8
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial 82.924221,16.581167,82.924222,16.581168
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 4ff1d8ae3296ca7c8baf4d77435e6a30beedfb6a7345e23ca207f54800c05ecd
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": 82.924221, 16.581167, 82.924221, 16.581168, 82.924222, 16.581168, 82.924222, 16.581167, 82.924221, 16.581167}

Didn't find what you're looking for? Suggest a dataset here.