Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Nutrient balances, river loads, and a counterfactual analysis to determine drivers of Mississippi River nitrogen and phosphorus loads between 1975 and 2017

Metadata Updated: July 6, 2024

We explored the possible causes of change in Mississippi River nutrient load trends through an impact evaluation that utilizes counterfactual scenarios to compare observed changes in river loads to changes in river load that might have occurred in the absence of potential causal factors. Prior to the counterfactual analysis, we developed a multiple linear regression model to predict TN and TP load changes over time. We modeled annual FN river loads as a function of current nutrient balances, lagged nutrient balances, and a latent variable representing the aggregate effect of other potential causal factors. We examined two different counterfactual scenarios, using hypothetical inputs to the calibrated TN and TP regression models. For Counterfactual A, the hypothetical inputs were current and lagged nutrient balances held constant at 1975 levels through 2017, and the Year terms were the same as the original inputs. The objective of holding the nutrient balance inputs constant was to investigate how river nutrient loads might have changed between 1975 and 2017 in the absence of any variability in nutrient balances after 1975. For Counterfactual B, the hypothetical inputs were the latent Year term held constant at 1975 levels through 2017, and the current and lagged nutrient balance inputs were the same as in the original inputs. The objective of holding the Year input constant at 1975 was to investigate how river nutrient loads might have changed between 1975 and 2017 in the absence of any variability in latent processes, potentially including BMP implementation, watershed buffering capacity, and other factors. The impact analysis compared the mean annual counterfactual analysis results to the mean original regression results for the time period 2013 to 2017. The original regression results refer to the predicted river loads estimated from the calibrated regression model using the original data.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 2, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 2, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/7eb8898b102abc0d71bc04cd61d89fee
Identifier USGS:5f6b9bfa82ce38aaa245556b
Data Last Modified 20211115
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id ccee6b52-9852-49a1-a105-109218dc3803
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -180.0,-90.0,180.0,90.0
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 99c2b4642bcef1d2777a775a592885c2c237609acb87112cb47ea3b056bb397c
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -180.0, -90.0, -180.0, 90.0, 180.0, 90.0, 180.0, -90.0, -180.0, -90.0}

Didn't find what you're looking for? Suggest a dataset here.