Near-term quantum computing for applications

Metadata Updated: February 28, 2019

From habitat automation to navigation and scheduling of tasks to networking, the challenges of modern space exploration are as much computational as they are aeronautical. Effective space exploration requires autonomous systems to maximize the utility of a mission that is subject to limited resources. Quantum computing holds great potential for helping NASA to advance the frontier of space exploration by solving larger problems more quickly, with higher quality solutions. Because quantum computing is such a young technology, exploiting that potential as soon as possible requires identifying the most promising applications and developing application-specific techniques that fully utilize small-scale hardware, as well as steering hardware development towards those applications.

I propose an integrated, multi-faceted research program that pushes forward the state of the art in near-term quantum computing for applications by exploiting the synergy between three candidate quantum computing platforms: quantum annealing (QA), quantum approximate optimization algorithm, and networks of optical parametric oscillators (OPOs).

First, I will map problems related to Air Traffic Management and planning the Stratospheric Observatory for Infrared Astronomy to the formalism used by quantum computers. Second, I will address the current challenge in implementing QA and QAOA due to hardware constraints by designing application-specific techniques for compiling higher level algorithms to low-level hardware. Third, I will utilize previous work on assessing the quantumness and performance of quantum annealers to answer analogous questions for OPOs. Lastly, I will design and implement error-correction schemes for quantum annealing based on continuous measurement and feedback.

Addressing QA, QAOA, and OPOs together enables a more robust characterization of their relative strengths and weakness, as well as the extraction of general principles applicable to all near-term quantum computing efforts. This unification will accelerate progress towards near-term quantum computing for applications.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_93964
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id a8b5ac7c-3267-4e56-82bd-6e1767a89844
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2021-08-01
Homepage URL https://techport.nasa.gov/view/93964
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2018-07-19
Program Code 026:027
Source Datajson Identifier True
Source Hash 3f352d15f1e23c3822e1f47d2b96af4db4f67bed
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.