Skip to content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Molecular Air Data Clear Air Turbulence Sensor: MADCAT, Phase II

Metadata Updated: November 12, 2020

Clear air turbulence (CAT), often referred to as "air pockets," is attributed to Kelvin-Helmholtz instabilities at altitudes usually above 18,000ft, often without visual cues (clouds, etc.), making it difficult to avoid. The vortices produced when atmospheric waves "break" can have diameters of 900-1200ft and tangential velocities of 70-85 ft/sec. CAT is dangerous to aircraft, recently demonstrated by United flight 967 from Washington-Dulles to Los Angeles on July 21, 2010, which encountered severe turbulence and landed in Denver with over 30 injured passengers, 21 requiring a hospital visit. Many other turbulence incidents have caused injuries or deaths to passengers and crew. Another recently-highlighted hazard is the inadequacy of current airspeed sensors on commercial aircraft. Federal investigators have reported that on at least a dozen recent flights by U.S. jetliners, malfunctioning equipment made it impossible for pilots to know how fast they were flying. A similar issue is believed to have played a role in the June 2009 crash of Air France 447 that killed all 228 people aboard. Michigan Aerospace Corporation (MAC) proposes the Molecular Air Data and Clear Air Turbulence (MADCAT) system which will be capable of providing not only a look-ahead capability to predict clear air turbulence but also a full air data solution (airspeed, angle of attack, angle of sideslip, pressure and temperature). The technology has already been demonstrated in-flight, confirming its ability to measure these air-data parameters. In addition, ground units based upon the same core technology have demonstrated the ability to detect atmospheric turbulence. MAC's direct-detection UV LIDAR technology uses molecular backscatter and does not require airborne particles and/or vapor to be suspended in the air, as other proposed solutions based on radar and LIDAR do. This Phase 2 project will result in a laboratory test model of MADCAT and a plan for subsequent airborne testing.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Maintainer
Identifier TECHPORT_9534
Data First Published 2013-08-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 6c632c09-56dd-4251-834b-1b3610a167f7
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://techport.nasa.gov/view/9534
Program Code 026:027
Source Datajson Identifier True
Source Hash de219c3f84caae258411647a59e70a598f43a5cd
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.

data.gov

An official website of the General Services Administration.

Looking for U.S. government information and services?
Visit USA.gov