Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae

Metadata Updated: June 15, 2024

Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following winter. Using observed SCPs of field-collected D. ponderosae larvae throughout the developmental season and associated phloem temperatures, we developed a mechanistic model that describes the SCP distribution of a population as a function of daily changes in the temperature-dependent processes leading to gain and loss of cold tolerance. It is based on the changing proportion of individuals in three states: (1) a non cold-hardened, feeding state, (2) an intermediate state in which insects have ceased feeding, voided their gut content and eliminated as many ice-nucleating agents as possible from the body, and (3) a fully cold-hardened state where insects have accumulated a maximum concentration of cryoprotectants (e.g. glycerol). Shifts in the proportion of individuals in each state occur in response to the driving variables influencing the opposite rates of gain and loss of cold hardening. The level of cold-induced mortality predicted by the model and its relation to extreme winter temperature is in good agreement with a range of field and laboratory observations. Our model predicts that cold tolerance of D. ponderosae varies within a season, among seasons, and among geographic locations depending on local climate. This variability is an emergent property of the model, and has important implications for understanding the insect's response to seasonal fluctuations in temperature, as well as population response to climate change. Because cold-induced mortality is but one of several major influences of climate on D. ponderosae population dynamics, we suggest that this model be integrated with others simulating the insect's biology.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date June 15, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date June 15, 2024
Publisher Climate Adaptation Science Centers
Maintainer
@Id http://datainventory.doi.gov/id/dataset/a15eb2501a3d3153df97ca803104e1c8
Identifier c5a117f7-0b14-4019-8194-fb95541a6ae4
Data Last Modified 2016-04-01
Category geospatial
Public Access Level public
Bureau Code 010:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 3eafb738-8c9b-4d82-83f7-ff9cdb9cbf4a
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -125.0,46.5,-114.0,49.0
Source Datajson Identifier True
Source Hash ada7e6080a1dbbeb98cda56cfa139f3447ce7bf486180e21861965872557cc4e
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -125.0, 46.5, -125.0, 49.0, -114.0, 49.0, -114.0, 46.5, -125.0, 46.5}

Didn't find what you're looking for? Suggest a dataset here.