Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Model and experimental validation of ocean kite dynamics and controls

Metadata Updated: January 20, 2025

This submission includes two peer-reviewed papers from researchers at North Carolina State University presenting the modeling and lab-scale experimentation of the dynamics and control of a tethered tidal ocean kite. Below are the abstracts of each file included in the submission.

Alvarez ECC: Flight and Tether Dynamics This paper models the dynamics of a marine tethered energy harvesting system focusing on exploring the sensitivity of the kite dynamics to tether parameters. These systems repetitively reels a kite out at high tension, then reels it in at low tension, in order to harvest energy. The kite?s high lift-to-drag ratio makes it possible to maximize net energy output through periodic cross-current flight. Significant modeling efforts exist in the literature supporting such energy maximization. The goal of this paper is to address the need for a simple model capturing the interplay between the system?s kite and tether dynamics. The authors pursue this goal by coupling a partial differential equation (PDE) model of tether dynamics with a point mass model of translational kite motion.

Siddiqui JDSMC: Lab-scale closed-loop model and validation This paper presents a study wherein we experimentally characterize the dynamics and control system of a lab-scale ocean kite, and then refine, validate, and extrapolate this model for use in a full-scale system. Ocean kite systems, which harvest tidal and ocean current resources through high-efficiency cross-current motion, enable energy extraction with an order of magnitude less material (and cost) than stationary systems with the same rated power output. However, an ocean kite represents a nascent technology that is characterized by relatively complex dynamics and requires sophisticated control algorithms. In order to characterize the dynamics and control of ocean kite systems rapidly, at a relatively low cost, the authors have developed a lab-scale, closed-loop prototyping environment for characterizing tethered systems, whereby 3D printed systems are tethered and flown in a water channel environment.

Access & Use Information

Public: This dataset is intended for public access and use. License: Creative Commons Attribution

Downloads & Resources

Dates

Metadata Created Date January 11, 2025
Metadata Updated Date January 20, 2025

Metadata Source

Harvested from OpenEI data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date January 11, 2025
Metadata Updated Date January 20, 2025
Publisher North Carolina State University
Maintainer
Identifier https://data.openei.org/submissions/7983
Data First Published 2020-03-01T07:00:00Z
Data Last Modified 2021-07-30T19:54:46Z
Public Access Level public
Bureau Code 019:20
Metadata Context https://openei.org/data.json
Metadata Catalog ID https://openei.org/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Data Quality True
Datagov Dedupe Retained 20250120171954
Harvest Object Id 129673d2-26b5-4f95-a981-8b8a2fb38a6c
Harvest Source Id 7cbf9085-0290-4e9f-bec1-91653baeddfd
Harvest Source Title OpenEI data.json
Homepage URL https://mhkdr.openei.org/submissions/339
License https://creativecommons.org/licenses/by/4.0/
Old Spatial {"type":"Polygon","coordinates":-180,-83,180,-83,180,83,-180,83,-180,-83}
Program Code 019:009
Projectlead Carrie Noonan
Projectnumber EE0008635
Projecttitle Device Design and Robust Periodic Motion Control of an Ocean Kite System for Marine Hydrokinetic Energy Harvesting
Source Datajson Identifier True
Source Hash 2e2ac5d59a63198bad24dc18eb107bdc39e01eac99ea2aaa73dfaf990e56bd12
Source Schema Version 1.1
Spatial {"type":"Polygon","coordinates":-180,-83,180,-83,180,83,-180,83,-180,-83}

Didn't find what you're looking for? Suggest a dataset here.