Skip to content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Measuring Shear Stress with a Microfluidic Sensor to improve Aerodynamic Efficiency, Phase I

Metadata Updated: November 12, 2020

Skin friction drag is directly proportional to the local shear stress of a surface and can be the largest factor in an aerodynamic body's total parasitic drag. The measurements of the local shear stress has long been a difficult measurement in an air-flow environment due to the interaction between the sensor and air flow. In order for modern researchers to further improve the efficiency of aircraft and other aerodynamic bodes, sensitive measurements in the smallest scale possible are required. To achieve this goal, the measurement community has turned towards micro-electrical mechanical systems which utilize microscopic moving parts to directly measure the shear stress. Unfortunately the cost, sensitivity, and packaging have proven to be insurmountable challenges in sensor development. Our company proposes a paradigm shift in shear stress measurements that will take advantage of the complete sensing package offered in MEMS without the need for moving mechanical parts or expensive manufacturing. Our patent pending sensor will allow us to measure the shear stress at a wall using microfluidic principles and fluid-structure interactions. In our proposed sensor, highly sensitive electrochemical measurements measure the vibrations induced in a membrane by the external shear stress. Because of the nature of electrochemical measurements, the relationship between size and sensitivity is reversed compared to MEMS sensing methods. As our sensor decreases in size, the current change induced in the system increases, resulting in a sensitivity limit imposed only by manufacturing limits. We believe that this sensor will have the ability to obtain real-time shear stress measurements across the range of external air flows. Due to the absence of moving parts within our proposed system, we believe that the sensor will be significantly more robust and durable for many different applications. At the conclusion of this project, we expect to move this technology from TRL-2 to TRL-4.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Maintainer
Identifier TECHPORT_18023
Data First Published 2014-12-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id d93ef56e-7185-4ede-89fa-860094531d67
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://techport.nasa.gov/view/18023
Program Code 026:027
Source Datajson Identifier True
Source Hash 6acffebfc345a0b2aba4f4fb93c3ca021333f361
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.

data.gov

An official website of the General Services Administration.

Looking for U.S. government information and services?
Visit USA.gov