Skip to content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Massive Modularity of Space and Surface Systems

Metadata Updated: November 12, 2020

This project will conduct a systems level investigation of a modular design and operations approach for future NASA exploration systems. Particular emphasis will be placed on surface Mars in-situ resource utilization (ISRU) manufactured systems to determine new designs that maximize modularity for manufacturing and for operations that can enable longlife systems through repair and reuse. The current paradigm of “single launch, single use” space systems may not be the most economically efficient approach for deep space missions.  Space systems designed for servicing, repair, and assembly are considered more sustainable and life-cycle cost effective. A number of past and present activities to develop and mature assembly and servicing capabilities have been undertaken by government, industry and academia. However, space systems are still not being designed for massive modularity due to a perceived risk in vehicle assembly. 


Recent advances in autonomous robotics as demonstrated by the Defense Advanced Research Projects Agency's (DARPA) Orbital Express program show that autonomous robotic assembly is credible and continually advancing. Another technology area inextricably linked to structural modularity is additive manufacturing (AM); this is particularly true for surface systems where ISRU is required for long duration missions. AM (also known as 3-D printing) is well suited to building parts and structural components in some finite volume (e.g. modules), but not for manufacture of large monolithic structures.


The third and missing ingredient to usage of massively modular space systems is reliable, efficient, and reversible joining technologies for modular systems. While various mechanical joining technologies exist, few are designed for space based robotic applications where the joining technology must be reversible for repair/reuse.  To this end, the proposed effort will seek to identify and develop a suite joining technologies for massive modularity.  For example, the reversibility of ultrasonic welding of plastics and ceramics will be investigated.


In summary, this effort will assess the worldwide advancements in autonomous robotic assembly, new AM advancements, and reversible joining technology.  With systems design using massive modularity, this activity emphasizes autonomous robotic assembly/repair/reuse to achieve long term reliability. Key technology advances include: 1) reversible joining at the module and component level; 2) Mars ISRU based structures manufacturing, assembly, and operations; and 3) smart interfaces for mechanical thermal, and electrical connectivity. The proposed activity will culminate with the identification and initial development of modular structures design and joining technologies for NASA and a rigorous system benefits analysis for future missions.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_34952
Data First Published 2016-09-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id 6a4463f3-549a-45b9-a9e2-19399ccc2910
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL
Program Code 026:027
Source Datajson Identifier True
Source Hash 5d39ce81e64c1be10f806274044cc0d7826c6022
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.

An official website of the General Services Administration.

Looking for U.S. government information and services?