Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Map of landslide structures and kinematic elements at Barry Arm, Alaska in the summer of 2020

Metadata Updated: July 6, 2024

Two active landslides at and near the retreating front of Barry Glacier at the head of Barry Arm Fjord in southern Alaska could generate tsunamis if they failed rapidly and entered the water of the fjord. Landslide A, at the front of the glacier, is the largest, with a total volume estimated at 455 M m3. Historical photographs from Barry Arm indicate that Landslide A initiated in the mid twentieth century, but there was a large pulse of movement between 2010 and 2017 when Barry Glacier thinned and retreated from about 1/2 of the toe of Landslide A. Interferometric synthetic aperture radar (InSAR) investigations of the area between May and November, 2020, revealed a second, smaller landslide (referred to as Landslide B) on the south-facing slope about 2 km up the glacier from Landslide A. Landslide-generated tsunami modeling in 2020 used a worst-case scenario where the entire mass of Landslide A (about 455 M m3) would rapidly enter the water. The use of multiple landslide volume scenarios in future tsunami modeling efforts would be beneficial in evaluating tsunami risk to communities in the Prince William Sound region. Herein, we present a map of landslide structures and kinematic elements within, and adjacent to, Landslides A and B. This map could form at least a partial basis for discriminating multiple volume scenarios (for example, a separate scenario for each kinematic element). We mapped landslide structures and kinematic elements at scale of 1:1000 using high-resolution lidar data acquired by the Alaska Division of Geological and Geophysical Surveys (DGGS) on June 26, 2020 and high resolution bathymetric data acquired by the National Oceanic and Atmospheric Administration (NOAA) in August, 2020. The predominate structures in both landslides are uphill- and downhill-facing normal fault scarps. Uphill-facing scarps dominate in areas where downslope extension from sliding has been relatively low. Downhill-facing scarps dominate in areas where downlslope extension from sliding has been relatively high. Strike-slip and oblique-slip faults form the boundaries of major kinematic elements. Four major kinematic elements, herein named the Kite, the Prow, the Core, and the Tail, are within, or adjacent to Landslide A. One major kinematic element, herein named the Wedge, forms Landslide B. Kinematic element boundaries are a result of cumulative, differential patterns and amounts of movement that began at inception of the landslides. Elements and/or their boundaries may change location as the landslides continue to evolve. Kinematic elements mapped in 2020 may or may not reflect patterns of historical short-term, episodic movement, or patterns of movement in the future. We were not able to field check our mapping in 2020 because of travel restrictions due to the COVID-19 pandemic. We hope to field check the mapping in the summer of 2021. In this data release, we include GIS files for the structural and kinematic map; metadata files for mapped structural features; and portable document files (PDFs) of a location map, and the structural and kinematic map at a scale of 1:5000. Lidar and bathymetric data used to map landslide structures will be released by DGGS and NOAA in 2021.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date July 6, 2024
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/4c757dc6faf3f17b2616fe72a2d768d7
Identifier USGS:5fff561ed34e592d8671ee85
Data Last Modified 20210209
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 21becef2-397c-46f8-b2bf-41b1a04228de
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -148.1813,61.1241,-148.1162,61.1751
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 04e71cfff8b1fa8c2c182bf6adaf327fdb7830a6e4c968aad5782a52ed45ddec
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -148.1813, 61.1241, -148.1813, 61.1751, -148.1162, 61.1751, -148.1162, 61.1241, -148.1813, 61.1241}

Didn't find what you're looking for? Suggest a dataset here.