Lunar EVA Dosimetry: MIcroDosimeter iNstrument (MIDN) System Suitable for Space Flight

Metadata Updated: July 17, 2020

MIDN PROTOTYPE FLIGHT INSTRUMENT 1. Based on our experience with the MIDN development, we designed and developed an advanced version of the instrument. 2. A prototype was developed that although did not include all of the specifications was able to achieve with a 10 um thick sensor a dE/dx ~ 3 keV/um in silicon that is equivalent to a lineal energy of ~1 keV/um in tissue. BENCHTOP DEVELOPMENT SYSTEM 1. By designing and constructing a new Faraday cage that houses the sensor and preamplifier circuit, upgrading the signal transmission circuitry between the system and the data acquisition area, and designing a new data acquisition method, we were able to reduce the inherent noise level well below a keV/micron, allowing detection of the peak of the dose distributions for minimum ionizing protons, the most difficult particles to detect microdosimetrically. 2. In collaboration with the M. Sivertz and A. Rusek at BNL, we have developed a system that allows identification of incident particles, categorized them according to their mass-to-charge ratio and energy, and correlated them with individual events in the microdosimeter. Recall that our earlier work in this regard resulted in our identifying lighter ion contaminants in the beam and their contributions to the microdosimetric spectra, a fact that we subsequently learned was known to BNL personnel. 3. We measured the energy deposited in a microdosimeter with radiation beams of Carbon at 290 MeV/n and protons at 1 GeV/n, 600 MeV/n, 250 MeV/n, 100 MeV/n, and 50 MeV/n at the NSRL facility at the BNL and achieved a lower energy cutoff of [HTML_REMOVED] 1 keV/um in silicon equivalent to a lineal energy cutoff in tissue of [HTML_REMOVED] 0.3 keV/um. ADVANCED SENSOR DEVELOPMENT 1. We now have prototypes of a new design of a solid-state microdosimeter with three dimension micron sized sensitive volumes, addressing some of the shortcomings identified earlier. This sensor was developed at the Centre for Medical Research Physics, and a new grant (Australian Research Council Discovery Project) was recently received by our collaborator to further support this project. 2. We have established collaborations with the EE (electrical engineering) departments at Johns Hopkins University (JHU) to explore the potential of developing alternative silicon sensors. These new sensors will be developed as part of our follow-on grant from the NSBRI. 3. With minimal support, JHU was able to supply us with two dies that have a variety of diodes for preliminary testing. A test fixture was developed to carry out tests, and measurements of alpha particles were successfully conducted. RADIATION TRANSPORT CODES 1. We imported the radiation transport code GEANT4 and two corollary programs MULASSIS (multilayered shielding simulation software tool) and GEMAT. These Monte Carlo codes allow us to simulate the microdosimetry spectra in silicon devices. 2. We also have access to the MCNPX (Monte Carlo N-Particle eXtended) radiation transport code.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_23610
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id e81925f2-91c3-428b-85eb-a508e30db826
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2008-12-01
Homepage URL
Data Last Modified 2020-01-29
Program Code 026:027
Source Datajson Identifier True
Source Hash 70225168a6b867124cfb831f85f0746d21e82e45
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.