Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines, Phase II

Metadata Updated: May 2, 2019

The goal of the proposed effort is to use selective laser melting (SLM, an additive manufacturing technique) to manufacture a hot fire-capable, water-cooled spool piece that features an advanced regenerative cooling technique that combines high heat flux performance with low pressure drop. SLM enables us to "print" the spool piece in days, despite the complexity of the regenerative liner's inherent flow passage complexity. This reduction in manufacturing lead time, combined with the fact that SLM manufacturing costs are driven in large part by the amount of raw powder used during fabrication, results in a substantial cost reduction for future regeneratively-cooled rocket engines. Additionally, the proposed advanced regenerative cooling approach features a heat-pickup efficiency that is at least two orders of magnitude higher than traditional milled channel liners and/or brazed tube bundle chambers.

As a result of our Phase I activity and confidence in our commercialization path, we will be making a capital investment to stand up an SLM manufacturing capability in house. We plan to augment that investment with an internally-funded trade study that we will use to derive main combustion chamber performance requirements for a future expander cycle engine. Those requirements will feed into Phase II design requirements and, ultimately, to supporting our commercialization opportunity presented by the Affordable Upper Stage Engine Program.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date May 2, 2019

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date May 2, 2019
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_17966
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Datagov Dedupe Retained 20190501230127
Harvest Object Id acc10a3e-9980-4b81-9ffc-3d8d450c6485
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2018-01-01
Homepage URL https://techport.nasa.gov/view/17966
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2018-07-19
Program Code 026:027
Source Datajson Identifier True
Source Hash 6a2627ccc698b96df7dd7246e01099170d0cf251
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.