LGM2605 as a mitigator of space radiation-induced vascular damage, Phase I

Metadata Updated: February 28, 2019

LignaMed, LLC is a drug development company with a fast track strategy to approval of LGM2605, an oral small molecule for use as a radiation mitigating agent that reduces harmful effects of radiation exposure of normal tissues. LignaMed aims to evaluate LGM2605 as a mitigator of space-radiation induced vascular damage. NASA missions to Mars will expose astronauts to solar and galactic cosmic mixed radiation including low dose [HTML_REMOVED] and proton radiation, but data is lacking on the biological and physiological effects in humans of this mixed source radiation. Research on space radiation effects on cellular systems, molecular targets and ultimately organ systems has identified potential harmful short and long-term effects on the health of astronauts. Work at the University of Pennsylvania identified damage to lungs years after a single exposure to low-dose gamma, 56Fe, 28Si and proton radiation exposure in mice. Acute and chronic radiation effects in organs are closely associated with vascular damage and dysfunction. Multiple studies have confirmed single source radiation side effects associated with significant loss of vascular integrity: increased vascular leakiness (edema), an activated inflammatory phenotype and extensive oxidative damage. However, damage to the vascular network under multiple radiation types simultaneously is not understood. LignaMed will employ gene knockout technology in vascular models exposed to space-relevant mixed radiation regimens to investigate the injury to the vasculature. We hypothesize that LGM2605 will mitigate space radiation-induced vascular damage by inhibiting early events that cause inflammation. This study will confirm that 1) space radiation drives endovascular damage via activation of the endothelial inflammatory phenotype resulting in increased permeability and 2) will validate LGM2605 as an effective mitigator of space radiation-induced vascular damage by inhibiting early events that drive long term adverse sequellae.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_93593
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id bb3a555c-5be0-407b-9f7e-e9d76521773c
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2017-12-01
Homepage URL https://techport.nasa.gov/view/93593
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2018-07-19
Program Code 026:027
Source Datajson Identifier True
Source Hash 61fd0875fe55ef86043c47dde6fdc8d0dd0ec40b
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.