LANDFIRE.US_120EVT

Metadata Updated: November 12, 2020

Introduction: The LANDFIRE existing vegetation layers describe the following elements of existing vegetation for each LANDFIRE mapping zone: existing vegetation type, existing vegetation canopy cover, and existing vegetation height. Vegetation is mapped using predictive landscape models based on extensive field reference data, satellite imagery, biophysical gradient layers, and classification and regression trees. Abstract: The existing vegetation type (EVT) data layer represents the current distribution of the terrestrial ecological systems classification developed by NatureServe for the western Hemisphere (http://www.natureserve.org/publications/usEcologicalsystems.jsp). A terrestrial ecological system is defined as a group of plant community types (associations) that tend to co-occur within landscapes with similar ecological processes, substrates, and/or environmental gradients. EVTs are mapped in LANDFIRE using decision tree models, field reference data, Landsat imagery, digital elevation model data, and biophysical gradient data. Go to http://www.landfire.gov/participate_acknowledgements.php for more information regarding contributors of field plot data. Decision tree models are developed separately for each of the three life-forms -tree, shrub, and herbaceous - using C5 software. Life-form specific cross validation error matrices are generated during this process to assess levels of accuracy of the models. Decision tree relationships are then used to generate life-form specific EVT spatial data layers. The final EVT and Environemtanl Site Potential (ESP) layers are compared and rectified through a series of QA/QC measures. Values of one or more of these data layers are adjusted based on a hierarchical decision tree ruleset in order to align the respective life-forms and life-zone of each ESP and EVT category. The EVT layer is used in many subsequent LANDFIRE data layers. LANDFIRE 2010 (lf_1.2.0) used Refresh 2001 (lf_1.0.5) data as a launching point to incorporate disturbance and its severity, both managed and natural, which occurred on the landscape after 2001. Specific examples of disturbance are: fire, vegetation management, weather, and insect and disease. The final disturbance data used in LANDFIRE is the result of several efforts that include data derived in part from remotely sensed land change methods, Monitoring Trends in Burn Severity (MTBS), and the LANDFIRE Events data call. Vegetation growth was modeled where both disturbance and non-disturbance occurs.Urban, agriculture, and wetlands were refined to reflect a 2010 landscape using the National Conservation Easement Database, National Wetlands Inventory (NWI), and Common Land Unit database (CLU) data.

Access & Use Information

License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Date February 1, 2007
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Reference Date(s) March 31, 2013 (publication)
Frequency Of Update notPlanned

Metadata Source

Harvested from DOI Open Data

Additional Metadata

Resource Type Dataset
Metadata Date February 1, 2007
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Reference Date(s) March 31, 2013 (publication)
Responsible Party Wildland Fire Science, Earth Resources Observation and Science Center, U.S. Geological Survey (Point of Contact)
Contact Email
Guid
Access Constraints Use Constraints: Although LANDFIRE products are delivered as 30-meter pixels, they should not be used at the individual pixel level or on small groups of pixels. LANDFIRE products were designed to support 1) national (all states) strategic planning, 2) regional (single large states or groups of smaller states), and 3) strategic/tactical planning for large sub-regional landscapes and Fire Management Units (FMUs) (such as significant portions of states or multiple federal administrative entities). The applicability of LANDFIRE products to support fire and land management planning on smaller areas will vary by product, location, and specific use. Further investigation by local and regional experts should be conducted to inform decisions regarding local applicability. However, it is the responsibility of the local user, using LANDFIRE metadata and local knowledge, to determine if and/or how LANDFIRE can be used for particular areas of interest. LANDFIRE products are not intended to replace local products, but rather serve as a back-up by providing wall-to-wall cross-boundary products. It is the responsibility of the user to be familiar with the value, assumptions, and limitations of LANDFIRE products. Managers and planners must evaluate LANDFIRE data according to the scale and requirements specific to their needs., Access Constraints: None
Bbox East Long -65.25444546636928
Bbox North Lat 51.64968101623376
Bbox South Lat 22.765446426860603
Bbox West Long -127.98775263969655
Coupled Resource
Frequency Of Update notPlanned
Licence This product is reproduced from geospatial information prepared by the U.S. Department of Agriculture, Forest Service and USGS EROS. By removing the contents of this package or taking receipt of these files via electronic file transfer methods, you understand that the data stored on this media is in draft condition. Represented features may not be in an accurate geographic location. The Forest Service and USGS EROS make no expressed or implied warranty, including warranty of merchantability and fitness, with respect to the character, function, or capabilities of the data or their appropriateness for any user's purposes. The Forest Service and USGS EROS reserve the right to correct, update, modify, or replace this geospatial information without notification.
Metadata Language
Metadata Type geospatial
Progress
Spatial Data Service Type
Spatial Reference System
Spatial Harvester True

Didn't find what you're looking for? Suggest a dataset here.