Innovative High Energy Density Storage in Nano Vacuum Tubes (NVTs) designed for Small Leakage Current with Enhanced Coulomb Blockade in Nano Gaps, Phase I

Metadata Updated: July 17, 2020

NASA's various Space Mission Directorate seek to develop technology to fulfill the technology gap and to enable missions with the unique high energy density charge storage technology. The overall goal of this STTR proposal is attempt to develop the novel energy storage technology to enable and enhance the capabilities of future NASA missions. The unique set of requirements for the power systems for various missions have emerged and they vary greatly, with advancements in components needed above the current State of the Art for high energy density, high power density, long life, high reliability, low mass/volume, radiation tolerance, and the wide temperature operation. For this STTR our first goal is evaluation of the concept of Nano Vacuum Tube (NVT) based charge storage device design that can provide High Energy Density storage with significant mass savings. The feasibility evaluation of design approaches are suggested to meet the desired special needs of charge storage in space. As a second goal, it plans to leverage IR&D done at UIUC and AMSENG to bring together unique experience base team to undertake the feasibility study to fulfill the identified technology gap through prototype development. Although the theory developed at UIUC predicts that storage of GJ/m3 charges is feasible in Nano Vacuum Tubes, the proposed experiments will decide what is feasible and which design options delivers the performance in space, when one uses the space stable heritage light weight materials. Finally, the suggested material designs and the devices need to meet reliability needs of the space mission environment for a typical ten year mission lifetime and conform to the mission space qualification needs and the requirements including high vacuum, microgravity, radiation, atomic oxygen, low out gassing, and high launch loads. The phase I - feasibility evaluation and the phase II - validation efforts suggested herewith can help us to fulfill the technology gap

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_90058
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id d8dca541-f2ee-47b3-8838-4def1bbbb580
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2017-06-01
Homepage URL https://techport.nasa.gov/view/90058
Data Last Modified 2020-01-29
Program Code 026:027
Source Datajson Identifier True
Source Hash cba0f4ceec14e0ef01b4685f049736200be4768b
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.