High Temperature Superconductor Bolometers for Planetary Science

Metadata Updated: July 17, 2020

This work is a design study of an instrument optimized for JPL[HTML_REMOVED]s novel high temperature superconductor bolometers. The work involves designing an imaging spectrometer that spans the infrared and offers capabilities in imaging and spectroscopy that are unprecedented for planetary science. The sensitivity and the use of passive cooling in the proposed far IR hyperspectral imager make this instrument a strong candidate for several missions to the outer Solar system proposed in the Planetary Science Decadal Survey: the Comet Surface Sample Return, the Trojan Tour and Rendezvous, the Saturn Probe, and the Uranus Orbiter and Probe. Furthermore, looking beyond this decade, the survey reads: [HTML_REMOVED]it is important to make significant near-term technology investments in the [[HTML_REMOVED]] Titan Saturn System Mission, and Neptune System Orbiter and Probe.[HTML_REMOVED] The high sensitivity of our instrument would allow resolving narrow and weak spectral features, acquiring spectra in short time windows (such as during brief flybys), and imaging fast dynamic processes (such as moving clouds or storms or during rapid flybys). When applied to observe storms in the atmospheres of the giant planets, our team expects our far IR hyperspectral imager to be able to acquire broadband images of storms in minutes, resolving chemical species at different depths to provide information about composition and depth with unprecedented detail. The proposed instrument may also be applied to measure thermophysical properties of icy moons (such as Europa and Enceladus), asteroids, and comets. Applications include measuring temperature and thermal inertia to study geology and surface evolution while also performing spectroscopy to study composition of the surface of these objects and their thin atmospheres. Additionally, the ring particles of the giant planets are of interest. Thermal inertia measurements probe the ring dynamics. Spectroscopy using emission, solar reflectance, and stellar occultation measurements of ring particles probe composition. The Planetary Science Decadal Survey strongly emphasizes the exploration of the outer solar system, which addresses some of the basic questions of planetary science: [HTML_REMOVED]How do the giant planets serve as laboratories to understand Earth, the solar system, and extrasolar planetary systems? Important objects for study: Jupiter, Neptune, Saturn, and Uranus.[HTML_REMOVED]; [HTML_REMOVED]Beyond Earth, are there contemporary habitats elsewhere in the solar system with necessary conditions, [[HTML_REMOVED]] to sustain life, and do organisms live there now? Important objects for study: Enceladus, Europa, Mars, and Titan.[HTML_REMOVED] One of the seven proposed New Frontiers missions (the Saturn Probe) aims at studying the atmosphere of Saturn and one of the three proposed large-scale Flagship mission (Uranus Orbiter and Probe) aims at studying the atmosphere of Uranus. Furthermore, looking beyond this decade, the survey reads: [HTML_REMOVED]it is important to make significant near-term technology investments in the [[HTML_REMOVED]] Titan Saturn System Mission, and Neptune System Orbiter and Probe.[HTML_REMOVED] The hyperspectral imager we envision would allow studying the atmospheres of Saturn, Uranus, Neptune, their moons and rings with higher spectral and spatial resolution than any other existing technology, and would also be applicable to studies of other outer solar system objects such as Trojan asteroids or comets. Broadband spectroscopy, as offered by the bolometers described below, is vital to studying the thick atmospheres of giant planets and moons because a wide range of wavelengths is needed for probing different depths into the atmosphere. The atmospheres of these bodies are opaque at shorter wavelengths due to the pressure-broadened absorption lines of H2 and He and, in some cases (e.g. Neptune and Titan), methane. High spectral resolution optics, will allow for the probing of a wide range of depths, along with relevant spectroscopy of numerous molecu

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_92061
Maintainer
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 0d3cfb99-6d0d-48e6-bcbf-514401a92127
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2017-09-01
Homepage URL https://techport.nasa.gov/view/92061
Data Last Modified 2020-01-29
Program Code 026:027
Source Datajson Identifier True
Source Hash 46c974f6434b874dba3e167fc095f5c1952af0da
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.