High energy density additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

Metadata Updated: August 1, 2018

We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.Hybrid rockets use a solid fuel with a liquid or gaseous oxidizer. They have advantages over solid fuel rockets for certain space applications because the solid fuel component is more stable than combined solid fuel and oxidizer, and advantages over liquid fuel rockets because the fuel does not require cryogenic storage or pumping and the burn rate can be controlled by regulating the flow of oxidizer. Ideal fuels should a fast regression rate, high density and good mechanical stability (so it will not break apart during burning). A current project at ARC is evaluating hybrid rockets comprised of solid paraffin fuel and cryogenic nitrous oxide and LOX oxidizer and has shown that higher regression rates are needed. Strained cyclic hydrocarbons have positive enthalpy and can be blended with paraffins to make fuels for hybrid rockets, but to be effective the resulting solid must have physical and mechanical characteristics at least comparable to the pure paraffin fuels. The stable hydrocarbon molecules with the highest strain energy are comprised of triangular rings of carbon atoms (cyclopropane), but these are gases at normal temperatures and pressures. Recently, chemists have synthesized molecules (called ivyanes, shown in Figure 1) containing multiple cyclopropane rings bonded together. We propose investigating blends of ivyanes and paraffins to determine their thermochemical and physical properties. We will first carry out simulations to predict enthalpy, density and stability of these blends using first principles chemistry and physics methods. Previously, first principles calculations by two of us (Jaffe and Zehe, J. Organic Chem. 2010, 75, 4387) demonstrated thermochemical properties can be determined to an accuracy of 2 kJ/mol for hydrocarbon molecules containing 10-20 carbon atoms. In the second phase, the density, melting temperature and heat of sublimation of solid ivyanes and the blends will be determined from molecular dynamics simulations.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date August 1, 2018

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date August 1, 2018
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_10633
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 9d6691f8-7331-437c-921a-7c80a7abf3a1
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2012-01-01T08:00:00.000Z
Homepage URL https://techport.nasa.gov/view/10633
Language en-US
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2017-09-18T00:00:00.000Z
Program Code 026:027
Publisher Hierarchy National Aeronautics and Space Administration > Space Technology Mission Directorate
Source Datajson Identifier True
Source Hash 56e7b674fc058825788711f94f7274a8b6b124e7
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.