High-Efficiency, Ka-Band Solid-State Power Amplifier Utilizing GaN Technology, Phase II

Metadata Updated: November 12, 2020

QuinStar Technology proposes to develop a high-efficiency, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space communications. Specifically, we propose to develop a 20 W power amplifier with an associated PAE of 60% operating over the 31.5 to 34 GHz band. This will be accomplished by employing two major innovations. First, we plan to utilize wide bandgap Gallium Nitride (GaN) on Silicon Carbide (SiC) device technology to fabricate our high-efficiency MMICs. Operating at a higher voltage (typically 20-28 V versus 4-5 V for GaAs), GaN permits power densities which are 5-10 times higher than GaAs or InP. In addition to a higher power density, high-voltage operation results in lower matching and cell combining losses, making these MMICs more efficient. Secondly, we are proposing to utilize a switching mode of operation (Class-F) to enhance the device efficiency. While this method has demonstrated PAE levels of >80% at 2 GHz, these levels have not yet been realized at Ka-band frequencies. Computer simulations, contained in this proposal, indicate that by using this method, device PAE levels ranging up to 73% are possible at 32 GHz. Furthermore, this was verified by benchmark data from at least one GaN foundry showing a device, operating in Class-F, with a PAE of 80% at 3 GHz. Finally, simulations at Ka-band frequencies indicate that even with circuit losses, we can still maintain the efficiency (PAE) at or very close to 60%. The layout and performance of a multistage MMIC is included in this proposal, together with the overall SSPA configuration and performance.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_33567
Data First Published 2017-12-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 90c44168-f08d-4138-ac83-4aa17a925ee8
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://techport.nasa.gov/view/33567
Program Code 026:027
Source Datajson Identifier True
Source Hash 349925fca6eac81eaedebc3da0e6b3dbdb3792b0
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.