Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

First ISCCP Regional Experiment (FIRE) Atlantic Stratocumulus Transition Experiment (ASTEX) University of Washington C-131A Aircraft Data

Metadata Updated: December 7, 2023

The First ISCCP Regional Experiments have been designed to improve data products and cloud/radiation parameterizations used in general circulation models (GCMs). Specifically, the goals of FIRE are (1) to improve basic understanding of the interaction of physical processes in determining life cycles of cirrus and marine stratocumulus systems and the radiative properties of these clouds during their life cycles and (2) to investigate the interrelationships between the ISCCP data, GCM parameterizations, and higher space and time resolution cloud data.To-date, four intensive field-observation periods were planned and executed: a cirrus IFO (October 13-November 2, 1986); a marine stratocumulus IFO off the southwestern coast of California (June 29-July 20, 1987); a second cirrus IFO in southeastern Kansas (November 13-December 7, 1991); and a second marine stratocumulus IFO in the eastern North Atlantic Ocean (June 1-June 28, 1992). Each mission combined coordinated satellite, airborne, and surface observations with modeling studies to investigate the cloud properties and physical processes of the cloud systems. The development of parameterizations requires an understanding of the processes that generate, maintain, and dissipate boundary layer clouds. This development is currently impeded by lack of understanding of the transition from stratocumulus clouds to trade cumulus clouds and the factors that control cloud type and amount in the boundary layer. The Atlantic Stratocumulus Transition EXperiment (ASTEX) was designed to address key issues related to stratocumulus to trade cumulus transition and mode selection. ASTEX involved intensive measurements from several platforms operating from 1-28 June 1992 in the area of the Azores and Madeira Islands. The purpose was to study how the transition and mode selection are effected by 1) cloud-top entrainment instability, 2) diurnal decoupling and clearing due to solar absorption, 3) patchy drizzle and a transition to horizontally inhomogeneous clouds through decoupling, 4) mesoscale variability in cloud thickness and associated mesoscale circulations, and 5) episodic strong subsidence lowering the inversion below the LCL. Detailed descriptions of the scientific goals of ASTEX are in the FIRE Phase II: Research plan (1989) and in the ASTEX Operations Plan (1992). The University of Washington Convair data are best considered raw at this point and should be validated by comparing with data collected from other platforms where possible if high accuracy is desired. Of the three measures of liquid water content available from the Convair, the Johnson-Williams (JW) hot-wire probe is considered the most readily usable, although there is a significant drift in the output that should be accounted for. The Forward Scattering Spectrometer Probe (FSSP) measured the liquid water content using optical scattering principles.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date December 7, 2023
Publisher NASA/LARC/SD/ASDC
Maintainer
Identifier C1000001051-LARC_ASDC
Data First Published 1999-11-09
Language en-US
Data Last Modified 2018-07-10
Category FIRE, geospatial
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Citation 1999-11-15. Archived by National Aeronautics and Space Administration, U.S. Government, NASA/LARC/SD/ASDC. https://doi.org/10.5067/ASDC_DAAC/FIRE/0067.
Harvest Object Id f4fa0524-5b2d-4213-9281-04f1e20619c1
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://doi.org/10.5067/ASDC_DAAC/FIRE/0067
Metadata Type geospatial
Old Spatial <?xml version="1.0" encoding="UTF-8"?><gml:Polygon xmlns:gml="http://www.opengis.net/gml/3.2" srsName="EPSG:4326"><gml:outerBoundaryIs><gml:LinearRing><gml:posList>32.34 -27.21 32.34 -21.23 38.94 -21.23 38.94 -27.21 32.34 -27.21</gml:posList></gml:LinearRing></gml:outerBoundaryIs><gml:innerBoundaryIs></gml:innerBoundaryIs></gml:Polygon>
Program Code 026:001
Source Datajson Identifier True
Source Hash 4fa609d7ae6ffe49e011ca15ad84e722666ce7e73cf7b679993327be61127755
Source Schema Version 1.1
Spatial
Temporal 1992-06-02T00:00:00Z/1992-06-27T23:59:59.999Z

Didn't find what you're looking for? Suggest a dataset here.