Electrostatic Detumble of Space Objects

Metadata Updated: November 12, 2020

Electrostatic Tractor Technology research explores the harmony of physics and engineering to develop and test electrostatic actuation methods for touchless detumble of space objects. Future spacecraft armed with this technology can perform orbital servicing, debris removal, and novel small satellite rendezvous and docking. The research will accomplish three central objectives. First, this research develops modeling techniques for the complex physical phenomena of electrostatic charging of a three-dimensional spacecraft in the space environment. Second, this research develops autonomous control algorithms to capitalize on and influence spacecraft charging to touchlessly actuate space objects. Third, this research experimentally tests and validates the models and control algorithms in terrestrial experiments to deliver a new core technology.

Electrostatic tractor research will utilize computer simulation environments to develop the electrostatic charging models and the control algorithms for a commanding spacecraft. In contrast to earlier work, I want to focus on the force and torque fields about spacecraft with general three-dimensional shapes. This poses new technical challenges in the modeling of the torque response, the stability analysis of attitude equilibrium surfaces, and the complex experimentation setup to test such a system in a terrestrial testbed. Currently in development is the Multi-Sphere Method that will allow fast and accurate spacecraft charging models. The complexity of the dynamics will benefit from an energy based approach to the non-linear control algorithms. Validation of the simulations requires vacuum chamber experiments and unique rigging apparatuses that enable terrestrial approximation of the space environment. The development of touchless actuation technologies supports my strong interests in advanced space technology development, and blending physics and engineering. The yearly NASA internship will allow me to learn more about orbital servicing developments, and become familiar with the NASA research groups and organizations investigating space technology development.

Electrostatic actuation research addresses NASA's strategic goals. Strategic Goal 3 seeks the development and demonstration of "critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable". Electrostatic detumble and docking methods are more capable and more cross-cutting then current in-development methods. The development electrostatic tractor and actuation will deliver the fundamental models, control theories, and demonstrate the application in terrestrial experiments. In addition, the research addresses part of Strategic Goal 2 in obtaining a more complete understanding of physical phenomena. To achieve these strategic goals, key technology development areas have been identified. Electrostatic actuation research aligns heavily with Technology Area 4: Robotics, Tele-Robotics and Autonomous Systems. NASA details the need for methods like electrostatic detumble that mitigate docking impact loads and are versatile in mission applications. The touchless method of electrostatic detumble addresses both of these needs. Additional implications of the research align with Technology Area 11: Modeling, Simulation, Information Technology and Processing as well as the relevant crossovers. NASA identifies high-fidelity science and aerospace engineering modeling is a core technology required for the planning of future missions. This need is directly served by the validated electrostatic charging models on complex spacecraft geometries provided.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date November 12, 2020
Metadata Updated Date November 12, 2020
Publisher Space Technology Mission Directorate
Unique Identifier Unknown
Identifier TECHPORT_91435
Data First Published 2018-08-01
Data Last Modified 2020-01-29
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id 0a8c8674-3c4b-4b4d-a953-d232b20214c9
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://techport.nasa.gov/view/91435
Program Code 026:027
Source Datajson Identifier True
Source Hash de8e9d561b859a4fb06560b39f82b61e16a90215
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.