Compact Kinetic Mechanisms for Petroleum-Derived and Alternative Aviation Fuels, Phase II

Metadata Updated: May 2, 2019

To be useful for computational combustor design and analysis using tools like the National Combustion Code (NCC), low-dimensional chemical kinetic mechanisms for modeling of real fuel combustion chemistry must be sufficiently compact so that they can be utilized in multi-dimensional, multi-physics, reacting computational fluid dynamics (CFD) simulations. Despite advances in CFD-appropriate kinetic mechanism reduction for kerosene-range fuels, significant combustion property variation among current and prospective certified fuels remains a challenge for meaningful CFD-advised design of high pressure, low-emissions combustors. The proposed project will leverage Princeton's ongoing work in aviation fuel surrogate formulation and modeling as well as kinetic mechanism development for emissions and high pressure combustion to produce and demonstrate a meta-model framework for automated generation of fuel-flexible compact chemical kinetic mechanisms appropriate for 3-D combustion CFD codes.

During Phase I, Compact Mechanisms for both an alternative, natural-gas derived synthetic kerosene and a conventional petro-derived Jet A kerosene have been developed and demonstrated. Results indicated that, over a very broad range of pressures, temperatures, equivalence ratios, and characteristic times, these Compact Mechanisms well reproduce predictions of global combustion behaviors (ignition, extinction, heat release rate, pollutant mole fractions) relative to predictions of significantly larger target chemical kinetic mechanisms.

Technical objectives for Phase II R&D include development of a stand-alone software application for generation of tailor-made, fuel-specific Compact Mechanisms, and demonstration of Compact Mechanism performance in computation-intensive CFD applications. Achievement of these objectives together will advance the current state of this R&D program to TRL 5.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date May 2, 2019

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date May 2, 2019
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_33401
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Datagov Dedupe Retained 20190501230127
Harvest Object Id a066afa8-7265-4c96-a602-b029f60f4b9c
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2017-08-01
Homepage URL https://techport.nasa.gov/view/33401
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2018-07-19
Program Code 026:027
Source Datajson Identifier True
Source Hash 68ae7c7b744b6b4c5ba14304efc1a199706ea2e5
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.