Compact Energy Conversion Module, Phase II

Metadata Updated: July 17, 2020

This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA customers include the Rocket Propulsion Test (RPT) program, the ISS, and the Orion deep space vehicle, all of which need wireless sensors to monitor and assess structural health. The ECM represents a major advancement in the use of wireless and self-powered devices by enabling the miniaturization of vibration-based energy harvesting devices suitable for powering sensors. Implications of the innovation There exist two basic problems in reducing the size of vibration-based harvesters that plague all current commercially available devices[HTML_REMOVED]both are addressed here. The first is addressed by eliminating the problem of frequency matching in compact devices. The second is addressed by providing a broadband device capable of energy conversion across a range of frequencies. Technical objectives Our existing prototype is a TRL 5 unit that we used to demonstrate our ability to convert kinetic energy to useful electrical power. This prototype combines piezoelectric beam transducers with artificially induced magnetic fields to force a nonlinear broadband behavior. Phase II uses this approach for compact sizing of low center frequency transducers with the objective of delivering a field-validated compact ECM that provides a near order-of-magnitude improvement over current energy harvesters. Research description Phase I created an efficient prototype and established feasibility. In Phase II we build a fully operational unit and perform field validation-tests compatible with SSC test beds. Anticipated results Anticipated results include a reduction in the amount of battery waste generated by self-powered devices that enables long-term wireless deployment. Phase I completed a TRL 5 prototype and tested its performance in relevant vibration environments. Phase II validates and delivers a TRL 6 unit.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources


Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date July 17, 2020
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_33280
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context
Metadata Catalog ID
Schema Version
Catalog Describedby
Harvest Object Id 29985679-a2d4-451d-ad35-cbfc9f6d5646
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2017-09-01
Homepage URL
Data Last Modified 2020-01-29
Program Code 026:027
Source Datajson Identifier True
Source Hash fc46305f657f1f241a40eef942c9c66aa3e26782
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.