Close Proximity Robotic Maneuvering through Flux Pinning Manipulation

Metadata Updated: February 28, 2019

Non-contacting actuation technology like flux pinning has never been demonstrated in space. The development of a nonphysical joint is critical for maneuvers such as docking, rendezvous, and in-orbit assembly (NASA Technology Area 4: robotics, tele-robotics and autonomous systems).

Flux pinning is not well characterized for interactions that involve all six rigid-body degree of freedoms. My research will focus on developing a better mathematical model and constructing a spaceflight system to demonstrate prolonged flux pinning interactions.

I will develop this model to show that flux pinning is robust enough to overcome environmental torques and magnetic field disturbances, given well simulated, tested, and robust control algorithms and system architectures (TRL, Technology Readiness Level 4). I will then construct a test environment to iteratively validate the theoretical model and demonstrate dynamic manipulation (TRL 5-6). To prove that this will be feasible in space missions, I will develop fully integrated CubeSats to perform maneuvers on these testbeds (TRL 7).

A successful space flight demonstration of flux pinned system will give way to a completely new kind of space proven joint. Spacecraft would no longer need to be assembled on the ground in bulky, awkward shapes. Systems of flux pinned components could be easily replaced with another or autonomously repaired in orbit with minimal effect on the entire system. The Hubble telescope was launched out of focus, requiring millions of dollars to train astronauts and launch a crew to refocus the mirrors. This is a distinct example of the advantages to in-orbit assembly/adjustment. Instead of risky spacewalks with skilled astronauts, the skewed mirrors of the telescope could have been adjusted and finely tuned by commanding the modular pieces from the ground. Telescopes require cold environments (80 K) which pairs well with flux pinning requirements. Flux pinned satellites could also function like the research racks on the ISS, but mounting to the outside environment. Small contained experiments could easily be swapped out, without the involved installation and take-down period requiring risky spacewalks and valuable astronaut time.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_91473
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id aca54293-628f-4444-9d9d-1fdc4e55c9ad
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2019-08-01
Homepage URL https://techport.nasa.gov/view/91473
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2018-07-19
Program Code 026:027
Source Datajson Identifier True
Source Hash 9459232deec56f01e59fa3aea3dcfa156454bbd7
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.